CN103868736A  Linear displacement cable force monitoringbased progressive load identification method for damaged cable  Google Patents
Linear displacement cable force monitoringbased progressive load identification method for damaged cable Download PDFInfo
 Publication number
 CN103868736A CN103868736A CN201410085805.0A CN201410085805A CN103868736A CN 103868736 A CN103868736 A CN 103868736A CN 201410085805 A CN201410085805 A CN 201410085805A CN 103868736 A CN103868736 A CN 103868736A
 Authority
 CN
 China
 Prior art keywords
 cable
 temperature
 data
 vector
 load
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Pending
Links
 238000006073 displacement reactions Methods 0.000 title claims abstract description 52
 230000000750 progressive Effects 0.000 title abstract 2
 238000004364 calculation methods Methods 0.000 claims abstract description 41
 239000011159 matrix materials Substances 0.000 claims abstract description 11
 239000002965 ropes Substances 0.000 claims description 133
 238000009826 distribution Methods 0.000 claims description 92
 230000000875 corresponding Effects 0.000 claims description 90
 230000003862 health status Effects 0.000 claims description 39
 239000000203 mixtures Substances 0.000 claims description 23
 230000001131 transforming Effects 0.000 claims description 17
 239000000463 materials Substances 0.000 claims description 14
 238000009659 nondestructive testing Methods 0.000 claims description 12
 238000000034 methods Methods 0.000 claims description 9
 238000002360 preparation methods Methods 0.000 claims description 7
 241001081830 Degeneriaceae Species 0.000 claims description 6
 240000002853 Nelumbo nucifera Species 0.000 claims description 6
 235000006508 Nelumbo nucifera Nutrition 0.000 claims description 6
 235000006510 Nelumbo pentapetala Nutrition 0.000 claims description 6
 230000000694 effects Effects 0.000 claims description 6
 206010022114 Injuries Diseases 0.000 claims description 5
 241001269238 Data Species 0.000 claims description 4
 230000035852 Tmax Effects 0.000 claims description 4
 238000004873 anchoring Methods 0.000 claims description 3
 238000005260 corrosion Methods 0.000 claims description 3
 238000000691 measurement method Methods 0.000 claims description 3
 229910000975 Carbon steel Inorganic materials 0.000 claims description 2
 238000004458 analytical methods Methods 0.000 claims description 2
 229910052799 carbon Inorganic materials 0.000 claims description 2
 239000010962 carbon steel Substances 0.000 claims description 2
 239000002131 composite materials Substances 0.000 claims description 2
 238000009413 insulation Methods 0.000 claims description 2
 238000004519 manufacturing process Methods 0.000 claims description 2
 230000002040 relaxant effect Effects 0.000 claims description 2
 239000010902 straw Substances 0.000 claims description 2
 238000000547 structure data Methods 0.000 claims description 2
 230000002123 temporal effects Effects 0.000 claims description 2
 238000007796 conventional methods Methods 0.000 description 4
 238000005457 optimization Methods 0.000 description 3
 238000004891 communication Methods 0.000 description 2
 238000007906 compression Methods 0.000 description 2
 239000000725 suspensions Substances 0.000 description 2
 230000005540 biological transmission Effects 0.000 description 1
 230000015572 biosynthetic process Effects 0.000 description 1
 238000009529 body temperature measurement Methods 0.000 description 1
 238000005516 engineering processes Methods 0.000 description 1
 238000005755 formation reactions Methods 0.000 description 1
 230000005484 gravity Effects 0.000 description 1
 230000001771 impaired Effects 0.000 description 1
 238000003331 infrared imaging Methods 0.000 description 1
 238000009434 installation Methods 0.000 description 1
 238000003860 storage Methods 0.000 description 1
 238000002910 structure generation Methods 0.000 description 1
 238000004861 thermometry Methods 0.000 description 1
 239000000700 tracer Substances 0.000 description 1
 230000000007 visual effect Effects 0.000 description 1
 238000005303 weighing Methods 0.000 description 1
Abstract
The invention discloses a linear displacement cable force monitoringbased progressive load identification method for a damaged cable. The method comprises the following steps: based on cable force monitoring, deciding whether a mechanical calculation reference model of a cable structure needs to be updated by monitoring the linear displacement of a support, the temperature of the cable structure, the environment temperature, the change degree of a load and the damage degree of the damaged cable to obtain a new mechanical calculation reference model of the cable structure, wherein the linear displacement of the support, the change degree of the load, the damage degree of the damaged cable and the temperatures are included in the model. On the basis of the new mechanical calculation reference model, according to an approximately linear relationship among a current value vector of a monitored quantity, a current initial value vector of the monitored quantity, a unit damage value change matrix of the monitored quantity and a tobecalculated current nominal damage vector, when the support is linearly displaced and the temperatures are changed, the influence caused by interference factors can be eliminated, and the damaged cable and the variable quantiy of a load can be accurately identified.
Description
Technical field
Cablestayed bridge, suspension bridge, the structures such as trussframe structure have a common ground, be exactly that they have many parts that bear tensile load, as suspension cable, main pushtowing rope, hoist cable, pull bar etc., the common ground of this class formation is with rope, cable or the rod member that only bears tensile load are support unit, for simplicity, this method is " Cable Structure " by such structure representation, and by all ropeway carryingropes of Cable Structure, carrying cable, and all rod members (being called again two power rod members) that only bear axial tension or axial compression load, unified be called " cable system " for simplicity, in this method, censure ropeway carryingrope with " support cable " this noun, carrying cable and only bear the rod member of axial tension or axial compression load, sometimes referred to as " rope ", so when using " rope " this word in the back, trussframe structure reality is just referred to two power rod members.In structure military service process, the correct identification of the health status to support cable or cable system is related to the safety of whole Cable Structure.In the time that environment temperature changes, the temperature of Cable Structure generally also can be along with changing, in the time that Cable Structure temperature changes, may there is displacement of the lines in Cable Structure bearing, the load that Cable Structure is born also may change, the health status of Cable Structure also may change simultaneously, at this complex condition, this method is identified the variable quantity of the load that damaged cable and Cable Structure bear based on cable force monitoring (this method is called monitored Suo Li " monitored amount "), belong to engineering structure health monitoring field.
Background technology
Reject load change, the displacement of Cable Structure support wire and structure temperature and change the impact on Cable Structure health status recognition result, thereby the variation of the health status of recognition structure is exactly current problem in the urgent need to address; Same, the variation of rejecting structure temperature, the displacement of Cable Structure support wire and structural health conditions change the impact of the recognition result of the variable quantity of the load that structure is born, significant equally to structural safety, this method discloses a kind of effective ways that solve these two problems.
Summary of the invention
Technical matters: this method discloses a kind of method, two kinds of functions that existing method can not possess are realized, be respectively, one, in the time that bearing has displacement of the lines, when the load of bearing in structure and structure (environment) temperature variation, can reject support wire displacement, load change and structure temperature and change the impact on Cable Structure health status recognition result, thereby identify exactly the health status of support cable; Two, this method, in identifying damaged cable, can also identify the variation of load simultaneously, and this method can be rejected the impact that support wire displacement, structure temperature variation and support cable health status change, and realizes the correct identification of load change degree.
Technical scheme: in the method, censure the coordinate of bearing about the X, Y, Z axis of Descartes's rectangular coordinate system with " bearing volume coordinate ", also can be said to is the volume coordinate of bearing about X, Y, Z axis, bearing is called the volume coordinate component of bearing about this axle about the concrete numerical value of the volume coordinate of some axles, and in this method, also a volume coordinate component with bearing is expressed the concrete numerical value of bearing about the volume coordinate of some axles; Censure the angular coordinate of bearing about X, Y, Z axis with " bearing angular coordinate ", bearing is called the angular coordinate component of bearing about this axle about the concrete numerical value of the angular coordinate of some axles, and in this method, also an angular coordinate component with bearing is expressed the concrete numerical value of bearing about the angular coordinate of some axles; All by " bearing generalized coordinate " denotion bearing angular coordinate and bearing volume coordinate, in this method, also a generalized coordinate component with bearing is expressed the concrete numerical value of bearing about volume coordinate or the angular coordinate of an axle; Bearing is called support wire displacement about the change of the coordinate of X, Y, Z axis, also can say that the change of bearing volume coordinate is called support wire displacement, and in this method, also a translational component with bearing is expressed the concrete numerical value of bearing about the displacement of the lines of some axles; Bearing is called angular displacement of support about the change of the angular coordinate of X, Y, Z axis, and in this method, also an angular displacement component with bearing is expressed the concrete numerical value of bearing about the angular displacement of some axles; Generalized displacement of support denotion support wire displacement and angular displacement of support are all, and in this method, also a generalized displacement component with bearing is expressed bearing about the displacement of the lines of some axles or the concrete numerical value of angular displacement; Support wire displacement also can be described as translational displacement, and support settlement is support wire displacement or the translational displacement component at gravity direction.
The external force that object, structure are born can be described as load, and load comprises face load and volume load.Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centrepoint load and distributed loads.Volume load is that continuous distribution is in the load of interior of articles each point, as the deadweight of object and inertial force.
Centrepoint load is divided into two kinds of concentrated force and concentrated couples, in coordinate system, for example, in Descartes's rectangular coordinate system, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centrepoint load, in the method a concentrated force component or a concentrated couple component are called to a load, the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component.
Distributed load is divided into line distributed load and face distributed load, the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, the size of distributed load is expressed by distribution intensity, distribution for intensity distribution characteristics (for example uniform, the distribution characteristicss such as sine function) and amplitude is expressed, and (for example two distributed loads are all uniform, but its amplitude difference, can welldistributed pressure be the concept that example illustrates amplitude: same structure is born two different welldistributed pressures, two distributed loads are all uniformly distributed loads, but the amplitude of a distributed load is 10MPa, the amplitude of another distributed load is 50MPa).If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of distributed load and distribution intensity is constant.In coordinate system, a distributed load can be resolved into several components, if the amplitude of the distribution intensity separately of several components of this distributed load changes, and the ratio changing is all not identical, so in the method the component of these several distributed loads is regarded as to the independently distributed load of same quantity, now load just represents the component of a distributed load, also component identical the amplitude changing ratio of the intensity that wherein distributes can be synthesized to a distributed load or be called a load.
Volume load is that continuous distribution is in the load of interior of articles each point, as the deadweight of object and inertial force, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution for intensity distribution characteristics (for example uniform, the distribution characteristicss such as linear function) and amplitude is expressed, and (for example two individual stow lotuses are all uniform, but its amplitude difference, can conduct oneself with dignity the concept of amplitude is described for example: the material difference of two parts of same structure, therefore density difference, so although the suffered volume load of these two parts is all uniform, but the amplitude of the suffered volume load of part may be 10kN/m
^{3}, the amplitude of the suffered volume load of another part is 50kN/m
^{3}).If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes.In coordinate system, one individual stow lotus can be resolved into several components (for example, in Descartes's rectangular coordinate system, volume load can resolve into the component about three axles of coordinate system, that is to say, in Descartes's rectangular coordinate system, volume load can resolve into three components), if the amplitude of the distribution intensity separately of several components of this volume load changes, and the ratio changing is all not identical, so in the method the component of this several body stow lotus is regarded as to the independently load of same quantity, also the volume sharing part of the load identical the amplitude changing ratio of the intensity that wherein distributes can be synthesized to an individual stow lotus or be called a load.
In the time that load is embodied as centrepoint load, in the method, " load unit variation " in fact refers to " unit change of centrepoint load ", similarly, " load change " specifically refers to " the big or small variation of centrepoint load ", " load change amount " specifically refers to " the big or small variable quantity of centrepoint load ", " load change degree " specifically refers to " the big or small intensity of variation of centrepoint load ", " the actual change amount of load " refers to " the big or small actual change amount of centrepoint load ", " load changing " refers to " centrepoint load that size changes ", briefly, now " soandso load soandso variation " refers to " soandso centrepoint load big or small soandso variation ".
In the time that load is embodied as distributed load, in the method, " load unit variation " in fact refers to " unit change of the amplitude of the distribution intensity of distributed load ", and the distribution characteristics of distributed load is constant, similarly, " load change " specifically refers to " variation of the amplitude of the distribution intensity of distributed load ", and the distribution characteristics of distributed load is constant, " load change amount " specifically refers to " variable quantity of the amplitude of the distribution intensity of distributed load ", " load change degree " specifically refers to " intensity of variation of the amplitude of the distribution intensity of distributed load ", " the actual change amount of load " specifically refers to " the actual change amount of the amplitude of the distribution intensity of distributed load ", " load changing " refers to " distributed load that the amplitude of distribution intensity changes ", briefly, now " soandso load soandso variation " refers to " amplitude of the distribution intensity of soandso distributed load soandso variation ", and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant.
In the time that load is embodied as volume load, in the method, " load unit variation " in fact refers to " unit change of the amplitude of the distribution intensity of volume load ", similarly, " load change " refers to " variation of the amplitude of the distribution intensity of volume load ", " load change amount " refers to " variable quantity of the amplitude of the distribution intensity of volume load ", " load change degree " refers to " intensity of variation of the amplitude of the distribution intensity of volume load ", " the actual change amount of load " refers to " the actual change amount of the amplitude of the distribution intensity of volume load ", " load changing " refers to " the volume load that the amplitude of distribution intensity changes ", briefly, " soandso load soandso variation " refers to " amplitude of the distribution intensity of soandso volume load soandso variation ", and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant.
This method specifically comprises:
A. for sake of convenience, it is evaluation object that this method unitedly calls evaluated support cable and load, establishes the quantity of evaluated support cable and the quantity sum of load is N, and the quantity of evaluation object is N; Determine the coding rule of evaluation object, by this rule, by evaluation object numberings all in Cable Structure, this numbering will be used for generating vector sum matrix in subsequent step; This method represents this numbering with variable k, k=1, and 2,3 ..., N; If total M in cable system
_{1}root support cable, Cable Structure rope force data comprises this M
_{1}the Suo Li of root support cable, obviously M
_{1}be less than the quantity N of evaluation object; Only pass through M
_{1}the M of individual support cable
_{1}the state that individual rope force data solves a unknown N evaluation object is impossible, and this method is at the whole M of monitoring
_{1}on the basis of root supporting cable force, the artificial M that increases in Cable Structure
_{2}root rope, is called sensing rope, in cable structure health monitoring process, will monitor this M newly increasing
_{2}the Suo Li of root sensing rope; Comprehensive abovementioned monitored amount, M Suo Li of the total M root rope of whole Cable Structure is monitored, has M monitored amount, and wherein M is M
_{1}with M
_{2}sum; M should be greater than the quantity N of evaluation object; The M newly increasing
_{2}the rigidity of root sensing rope is compared with the rigidity of any support cable of Cable Structure, should be much smaller; The M newly increasing
_{2}the Suo Li of each sensing rope of root sensing rope should be more much smaller than the Suo Li of any support cable of Cable Structure, even if can ensure like this M that this newly increases
_{2}there is damage or lax in root sensing rope, the impact of stress on other members of Cable Structure, strain, distortion is very little; The M newly increasing
_{2}on the xsect of root sensing rope, normal stress should be less than its fatigue limit, and these requirements can ensure the M newly increasing
_{2}can there is not fatigue damage in root sensing rope; The M newly increasing
_{2}the fully anchoring of two ends of root sensing rope, ensures there will not be lax; The M newly increasing
_{2}root sensing rope should obtain sufficient anticorrosion protection, ensures the M newly increasing
_{2}can there is not damage and lax in root sensing rope; For simplicity, in the method by " monitored all parameters of Cable Structure " referred to as " monitored amount "; Give M monitored amount serial number, this method is with representing this numbering with variable j, j=1, and 2,3 ..., M, this numbering will be used for generating vector sum matrix in subsequent step; The M newly increasing in the method
_{2}root sensing rope is as a part for Cable Structure, and while hereinafter mentioning Cable Structure again, Cable Structure comprises increases M
_{2}cable Structure before root sensing rope and the M newly increasing
_{2}root sensing rope, that is to say and while hereinafter mentioning Cable Structure, refer to comprise the M newly increasing
_{2}the Cable Structure of root sensing rope; Therefore hereinafter mention while calculating " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " measurement, Cable Structure wherein comprises the M newly increasing
_{2}root sensing rope, " the Cable Structure steady temperature data " that obtain comprise the M newly increasing
_{2}the steady temperature data of root sensing rope, obtain the M newly increasing
_{2}the method of the steady temperature data of root sensing rope is same as the M of Cable Structure
_{1}the preparation method of the steady temperature data of root support cable, later explanation no longer one by one; Measure the M newly increasing
_{2}the method of the Suo Li of root sensing rope is same as the M of Cable Structure
_{1}the rope force measurement method of root support cable, later explanation no longer one by one; When the support cable of Cable Structure is carried out to any measurement, simultaneously to the M newly increasing
_{2}root sensing rope carries out same measurement, later explanation no longer one by one; The M newly increasing
_{2}in root sensing rope except not there is not damage and relaxing, to the M newly increasing
_{2}the requirement of the quantity of information of root sensing rope is identical with requirement and the preparation method of the quantity of information of the support cable of Cable Structure with preparation method, later explanation no longer one by one; While setting up later the various mechanical model of Cable Structure, by the M newly increasing
_{2}root sensing rope is treated as the support cable of Cable Structure and is treated; Below, except mentioning the damage and lax occasion of support cable, in the time mentioning support cable, said support cable comprises the support cable of Cable Structure and the M newly increasing
_{2}root sensing rope; In this method, must not be greater than 30 minutes to the time interval between any twice measurement of same amount RealTime Monitoring, the moment of survey record data is called the physical record data moment; The external force that object, structure are born can be described as load, and load comprises face load and volume load; Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centrepoint load and distributed loads; Volume load is that continuous distribution is in the load of interior of articles each point, including the deadweight and inertial force of object; Centrepoint load is divided into two kinds of concentrated force and concentrated couples, comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centrepoint load, in the method a concentrated force component or a concentrated couple component being counted or added up is a load, and the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component; Distributed load is divided into line distributed load and face distributed load, and the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, and the size of distributed load is expressed by distribution intensity, and distribution intensity is expressed by distribution characteristics and amplitude; If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a distributed load can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this distributed load changes, and the ratio changing is all not identical, so in the method three components of this distributed load being counted or added up is three distributed loads, and now load just represents the onecomponent of distributed load; Volume load be continuous distribution in the load of interior of articles each point, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution intensity is expressed by distribution characteristics and amplitude; If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, one individual stow lotus can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this volume load changes, and the ratio changing is all not identical, and so in the method three components of this volume load being counted or added up is three distributed loads;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of Cable Structure composition material and Cable Structure environment of living in, utilize the geometry measured data of design drawing, asconstructed drawing and the Cable Structure of Cable Structure, utilize these data and parameter to set up the thermal conduction study computation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, statistics obtains interior during this period of time cloudy quantity and is designated as T cloudy day, in the method can not be seen to one of the sun daytime and be called all day the cloudy day, statistics obtain each cloudy day in T cloudy day 0 after the sunrise moment next day highest temperature and the lowest temperature between 30 minutes, the sunrise moment on the meteorology that the sunrise moment refers to base area revolutions and the rule that revolves round the sun is definite, do not represent necessarily can see the same day sun, can inquire about data or calculate sunrise moment of each required day by conventional meteorology, each cloudy day 0 after the sunrise moment next day highest temperature between 30 minutes deduct the maximum temperature difference that the lowest temperature is called this cloudy daily temperature, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, get maximal value in the maximum temperature difference of daily temperature at T cloudy day for reference to temperature difference per day, be designated as Δ T with reference to temperature difference per day
_{r}, between inquiry Cable Structure location and Altitude Region, place, be no less than temperature that the meteorological data in recent years of 2 years or actual measurement obtain Cable Structure environment of living in time with delta data and the Changing Pattern of sea level elevation, calculate the temperature of the Cable Structure environment of living in recent years that is no less than 2 years between Cable Structure location and Altitude Region, place about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of narration
_{h}unit be DEG C/m, on the surface of Cable Structure, get " R Cable Structure surface point ", get the Specific Principles of " R Cable Structure surface point " narrates in step b3, the temperature of this R Cable Structure surface point will be obtained by actual measurement below, claim that the temperature data that actual measurement obtains is " R Cable Structure surface temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim that the temperature data calculating is " R Cable Structure surface temperature computational data ", from the residing minimum height above sea level of Cable Structure to the highest height above sea level, in Cable Structure, uniform choosing is no less than three different sea level elevations, the sea level elevation place choosing at each, at least choose two points at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions of choosing are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in the measurement Cable Structure of choosing along comprising the sunny slope outer normal direction of Cable Structure and in the shade outer normal direction of Cable Structure in the direction of the Temperature Distribution of wall thickness, measure Cable Structure along each and be no less than three points along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, measure all temperature that are selected a little, the temperature recording is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " and measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if chosen H different sea level elevation, at each sea level elevation place, choose B and measured the direction of Cable Structure along the Temperature Distribution of wall thickness, direction along each measurement Cable Structure along the Temperature Distribution of wall thickness has been chosen E point in Cable Structure, wherein H and E are not less than 3, B is not less than 2, if HBE is the product of H and B and E, corresponding total HBE " measuring the point of Cable Structure along the temperature profile data of thickness ", to obtain by actual measurement the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " below, claim that the temperature data that actual measurement obtains is " HBE Cable Structure is along thickness temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, just claim that the temperature data calculating is " HBE Cable Structure is along thickness temperature computation data ", if BE is the product of B and E, total BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " in sea level elevation place of choosing at each in this method, measure temperature in Cable Structure location according to meteorology and require to choose a position, will obtain the temperature of the Cable Structure place environment that meets the requirement of meteorology measurement temperature in this position actual measurement, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of getable this day, at the flat board of a carbon steel material of this position of sound production, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse and dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of getable this day, the nonsunny slope of reference plate is covered with insulation material, RealTime Monitoring is obtained to the temperature of the sunny slope of reference plate,
B2: RealTime Monitoring obtains R Cable Structure surface temperature measured data of abovementioned R Cable Structure surface point, RealTime Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and RealTime Monitoring obtains the temperature record of the Cable Structure place environment that meets the requirement of meteorology measurement temperature simultaneously, obtain being carved at sunrise the same day temperature measured data sequence of the Cable Structure place environment between 30 minutes after sunrise moment next day by RealTime Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data that was carved at sunrise the Cable Structure place environment between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the temperature measured data sequence of Cable Structure place environment, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains Cable Structure place environment by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T
_{emax}, temperature measured data sequence by Cable Structure place environment obtains the temperature of Cable Structure place environment about the rate of change of time by conventional mathematical computations, and this rate of change is also along with the time changes, obtain being carved at sunrise the same day measured data sequence of the temperature of the sunny slope of the reference plate between 30 minutes after sunrise moment next day by RealTime Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data that was carved at sunrise the temperature of the sunny slope of the reference plate between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the measured data sequence of temperature of the sunny slope of reference plate, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of the sunny slope of reference plate by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T
_{pmax}, obtain being carved at sunrise the same day Cable Structure surface temperature measured data sequence of all R Cable Structure surface points between 30 minutes after sunrise moment next day by RealTime Monitoring, there is R Cable Structure surface point just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by being carved at sunrise the Cable Structure surface temperature measured data between 30 minutes after the sunrise moment next day same day of a Cable Structure surface point, find maximum temperature and minimum temperature in each Cable Structure surface temperature measured data sequence, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of each Cable Structure surface point by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T
_{smax}, obtain the temperature of each Cable Structure surface point about the rate of change of time by each Cable Structure surface temperature measured data sequence by conventional mathematical computations, the temperature of each Cable Structure surface point about the rate of change of time also along with the time changes, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the sea level elevation place that chooses at each and amount to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and the difference of minimum temperature, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", choose H different sea level elevation and just had H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", claim that the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax},
B3: measure and calculate acquisition Cable Structure steady temperature data, first, determine the moment that obtains Cable Structure steady temperature data, the condition relevant to the moment that determines acquisition Cable Structure steady temperature data has six, Section 1 condition be obtain Cable Structure steady temperature data moment after being carved at sunset sunrise moment next day between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the definite meteorology of revolution rule, can inquire about data or calculate sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, reference plate maximum temperature difference Δ T
_{pmax}with Cable Structure surface maximum temperature difference Δ T
_{smax}all be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, measure the environment maximum error Δ T that calculates above
_{emax}be not more than with reference to temperature difference per day Δ T
_{r}, and reference plate maximum temperature difference Δ T
_{pmax}after deducting 2 degrees Celsius, be not more than Δ T
_{emax}, and Cable Structure surface maximum temperature difference Δ T
_{smax}be not more than Δ T
_{pmax}, only need meet in a condition of Section 2 and b condition one is just called and meets Section 2 condition, Section 3 condition is that the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 4 condition is that the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 5 condition is in the moment that obtains Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is to be carved at sunrise the minimal value between 30 minutes after the sunrise moment next day same day, Section 6 condition is at the moment that obtains Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius, this method is utilized abovementioned six conditions, any one in following three kinds of moment is called to " the mathematics moment that obtain Cable Structure steady temperature data ", the first moment is to meet Section 1 in abovementioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 5 condition, the second moment is the moment that only meets the Section 6 condition in abovementioned " condition relevant to the moment that determines acquisition Cable Structure steady temperature data ", the third moment is to meet Section 1 in abovementioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 6 condition simultaneously, be exactly in this method when one in the physical record data moment when obtaining the mathematics moment of Cable Structure steady temperature data, the moment that obtains Cable Structure steady temperature data is exactly the mathematics moment that obtains Cable Structure steady temperature data, be not any moment in the physical record data moment in this method if obtain the mathematics moment of Cable Structure steady temperature data, getting this method is the moment that obtains Cable Structure steady temperature data close to moment of those physical record data in the mathematics moment that obtains Cable Structure steady temperature data, this method will be used the amount at the moment survey record that obtains Cable Structure steady temperature data to carry out the relevant health monitoring analysis of Cable Structure, this method is approximate thinks that the Cable Structure temperature field in moment of obtaining Cable Structure steady temperature data is in stable state, i.e. the not temporal evolution of Cable Structure temperature in this moment, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment that obtains Cable Structure steady temperature data, utilize the thermal conduction study computation model of Cable Structure, obtain obtaining the Temperature Distribution of Cable Structure in moment of Cable Structure steady temperature data by conventional Calculation of Heat Transfer, now calculate by stable state in the temperature field of Cable Structure, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called R Cable Structure stable state surface temperature computational data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure is along thickness temperature computation data ", in the time of R Cable Structure surface temperature measured data and R Cable Structure stable state surface temperature computational data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure is along thickness temperature computation data " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure stable state surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", get " R Cable Structure surface point " on the surface of Cable Structure time, the quantity of " R Cable Structure surface point " and necessary three conditions that meet that distribute, first condition is when Cable Structure temperature field is during in stable state, when the temperature of any point on Cable Structure surface be by " R Cable Structure surface point " in Cable Structure surface on the observed temperature linear interpolation of the adjacent point in this arbitrfary point while obtaining, on the Cable Structure surface that linear interpolation obtains, on the temperature of this arbitrfary point and Cable Structure surface, the error of the actual temperature of this arbitrfary point is not more than 5%, Cable Structure surface comprises support cable surface, second condition is that in " R Cable Structure surface point ", the quantity at the point of same sea level elevation is not less than 4, and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtaining, gets Δ T for convenience of narration
_{h}unit be DEG C/m that the unit of getting Δ h for convenience of narration is m, " R Cable Structure surface point " refers to while only considering sea level elevation along the definition of adjacent Cable Structure surface point between two of sea level elevation, in " R Cable Structure surface point ", do not have a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, the 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to the geometric properties of Cable Structure and bearing data, in Cable Structure, find and be subject to the sunshineduration position of those surface points the most fully the whole year, in " R Cable Structure surface point ", having a Cable Structure surface point at least is the annual point being subject in the most sufficient those surface points of sunshineduration in Cable Structure,
C. directly measure according to " the temperature survey calculating method of the Cable Structure of this method " the Cable Structure steady temperature data that calculate under original state, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T
_{o}", actual measurement or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses, obtain T in actual measurement
_{o}time, namely obtaining initial Cable Structure steady temperature data vector T
_{o}the synchronization in moment, directly measure the measured data that calculates initial Cable Structure, the measured data of initial Cable Structure is to comprise Cable Structure centrepoint load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the initial value of all monitored amounts, the initial rope force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure bearing spatial data, initial Cable Structure angledata, initial Cable Structure spatial data is in interior measured data, in obtaining the measured data of initial Cable Structure, measurement calculates the data of the health status that can express support cable including the Nondestructive Testing Data of support cable, the data of the health status that can express support cable are now called support cable initial health data, the initial value of all monitored amounts forms monitored amount initial value vector C
_{o}, monitored amount initial value vector C
_{o}the coding rule of coding rule and M monitored amount identical, utilize support cable initial health data and Cable Structure load measurement data to set up evaluation object initial damage vector d
_{o}, vectorial d
_{o}represent with initial mechanical calculating benchmark model A
_{o}the initial health of the evaluation object of the Cable Structure representing, evaluation object initial damage vector d
_{o}element number equal N, d
_{o}element and evaluation object be onetoone relationship, vectorial d
_{o}the coding rule of element identical with the coding rule of evaluation object, if d
_{o}evaluation object corresponding to some elements be support cable, so a d in cable system
_{o}the numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the corresponding support cable of this element is intact, do not damage, if its numerical value is 100%, represent that the corresponding support cable of this element has completely lost loadbearing capacity, lost the loadbearing capacity of corresponding proportion if its numerical value between 0 and 100%, represents this support cable, if d
_{o}evaluation object corresponding to some elements be some load, in this method, get d
_{o}this element numerical value be 0, the initial value that represents the variation of this load is 0, if while not having the Nondestructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d
_{o}in the each element numerical value relevant to support cable get 0, initial Cable Structure bearing spatial data forms initial Cable Structure bearing volume coordinate vector U
_{o},
The temperature variant physical and mechanical properties parameter of the various materials that d. use according to measured data, support cable initial health data, Cable Structure centrepoint load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the Cable Structure of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, initial Cable Structure bearing volume coordinate vector U
_{o}, initial Cable Structure steady temperature data vector T
_{o}with all Cable Structure data that preceding step obtains, set up the initial mechanical calculating benchmark model A of the Cable Structure that counts " Cable Structure steady temperature data "
_{o}, based on A
_{o}the Cable Structure computational data calculating must approach its measured data very much, and difference therebetween must not be greater than 5%; Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}cable Structure bearing spatial data be exactly initial Cable Structure bearing volume coordinate vector U
_{o}; Corresponding to A
_{o}evaluation object initial damage vector d for evaluation object health status
_{o}represent; Corresponding to A
_{o}monitored amount initial value vector C for the initial value of all monitored amounts
_{o}represent; U
_{o}, T
_{o}and d
_{o}a
_{o}parameter, by A
_{o}initial value and the C of all monitored amounts of obtaining of Mechanics Calculation result
_{o}the initial value of all monitored amounts that represent is identical, therefore also can say C
_{o}by A
_{o}mechanics Calculation result composition, A in the method
_{o}, C
_{o}, d
_{o}, U
_{o}and T
_{o}constant;
E. in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A
^{i} _{o}, A
_{o}and A
^{i} _{o}count temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A
^{i} _{o}" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T
^{i} _{o}represent vector T
^{i} _{o}definition mode and vector T
_{o}definition mode identical, T
^{i} _{o}element and T
_{o}element corresponding one by one; When the i time circulation starts, corresponding to A
^{i} _{o}" Cable Structure bearing spatial data " with current initial Cable Structure bearing volume coordinate vector U
^{i} _{o}represent vectorial U
^{i} _{o}definition mode and vectorial U
_{o}definition mode identical, U
^{i} _{o}element and U
_{o}element corresponding one by one; The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d
^{i} _{o}, d
^{i} _{o}cable Structure A while representing this circulation beginning
^{i} _{o}the health status of evaluation object, d
^{i} _{o}definition mode and d
_{o}definition mode identical, d
^{i} _{o}element and d
_{o}element corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C
^{i} _{o}represent vectorial C
^{i} _{o}definition mode and vectorial C
_{o}definition mode identical, C
^{i} _{o}element and C
_{o}element corresponding one by one, the current initial value vector of monitored amount C
^{i} _{o}represent corresponding to A
^{i} _{o}the concrete numerical value of all monitored amounts; U
^{i} _{o}, T
^{i} _{o}and d
^{i} _{o}a
^{i} _{o}characterisitic parameter, C
^{i} _{o}by A
^{i} _{o}mechanics Calculation result composition; When circulation starts for the first time, A
^{i} _{o}be designated as A
^{1} _{o}, set up A
^{1} _{o}method for making A
^{1} _{o}equal A
_{o}; When circulation starts for the first time, T
^{i} _{o}be designated as T
^{1} _{o}, set up T
^{1} _{o}method for making T
^{1} _{o}equal T
_{o}; When circulation starts for the first time, U
^{i} _{o}be designated as U
^{1} _{o}, set up U
^{1} _{o}method for making U
^{1} _{o}equal U
_{o}; When circulation starts for the first time, d
^{i} _{o}be designated as d
^{1} _{o}, set up d
^{1} _{o}method for making d
^{1} _{o}equal d
_{o}; When circulation starts for the first time, C
^{i} _{o}be designated as C
^{1} _{o}, set up C
^{1} _{o}method for making C
^{1} _{o}equal C
_{o};
F. from entering the circulation that is walked q step by f here, in structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data "
^{i}, vector T
^{i}definition mode and vector T
_{o}definition mode identical, T
^{i}element and T
_{o}element corresponding one by one, obtain current cable structure steady temperature data vector T in actual measurement
^{i}synchronization, actual measurement obtains Cable Structure bearing volume coordinate current data, all Cable Structure bearing volume coordinate current datas composition current cable structures actual measurement bearing volume coordinate vector U
^{i}, vectorial U
^{i}definition mode and vectorial U
_{o}definition mode identical, U
^{i}element and U
_{o}element corresponding one by one, obtain vector T in actual measurement
^{i}time, actual measurement obtains obtaining current cable structure steady temperature data vector T
^{i}the Cable Structure of synchronization in moment in the currency of all monitored amounts, all these numerical value form monitored amount current value vector C
^{i}, vectorial C
^{i}definition mode and vectorial C
_{o}definition mode identical, C
^{i}element and C
_{o}element corresponding one by one, represent that identical monitored amount is at numerical value in the same time not, obtain current cable structure steady temperature data vector T in actual measurement
^{i}time, to the M newly increasing
_{2}root sensing rope carries out NonDestructive Testing, therefrom identify and occur damage or lax sensing rope, according to monitored amount coding rule, what before this method, occur damages with the appearance identifying or lax element corresponding to sensing rope according to removing each vector of monitored amount coding rule numbering, also the appearance damage no longer occurring in the each vector sum matrix occurring after this method and identify or lax element corresponding to sensing rope, mention sensing rope after this method time, no longer comprise being identified here and occur damage or lax sensing rope, mention monitored amount after this method time, no longer comprise and be identified the Suo Li that occurs damage or lax sensing rope here, identify several from Cable Structure and occur damage or lax sensing rope, just by M
_{2}reduce same quantity with M,
G. according to current cable structure actual measurement bearing volume coordinate vector U
^{i}with current cable structure steady temperature data vector T
^{i}, upgrade current initial mechanical calculating benchmark model A according to step g 1 to g3
^{i} _{o}, the current initial value of monitored amount vector C
^{i} _{o}, current initial Cable Structure steady temperature data vector T
^{i} _{o}with current initial Cable Structure bearing volume coordinate vector U
^{i} _{o}, and the current initial damage vector of evaluation object d
^{i} _{o}remain unchanged;
G1. compare respectively T
^{i}and T
^{i} _{o}, U
^{i}and U
^{i} _{o}if, T
^{i}equal T
^{i} _{o}and U
^{i}equal U
^{i} _{o}, do not need A
^{i} _{o}upgrade, otherwise need to follow these steps to A
^{i} _{o}, U
^{i} _{o}and T
^{i} _{o}upgrade;
G2. calculate U
^{i}with U
_{o}poor, U
^{i}with U
_{o}difference be exactly the support wire displacement of Cable Structure bearing about initial position, with support wire motion vector, V represents support wire displacement, V equals U
^{i}deduct U
_{o}; Calculate T
^{i}with T
_{o}poor, T
^{i}with T
_{o}difference be exactly the variations of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{i}with T
_{o}poor represent with steady temperature change vector S, S equals T
^{i}deduct T
_{o}, S represents the variation of Cable Structure steady temperature data;
G3. first to A
_{o}in Cable Structure bearing apply support wire displacement constraint, the numerical value of support wire displacement constraint is just taken from the numerical value of corresponding element in support wire motion vector V, then to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, to A
_{o}middle Cable Structure bearing applies support wire displacement constraint and Cable Structure is applied and obtains the current initial mechanical calculating benchmark model A that upgrades after temperature variation
^{i} _{o}, upgrade A
^{i} _{o}time, U
^{i} _{o}all elements numerical value is also used U
^{i}all elements numerical value is corresponding to be replaced, and has upgraded U
^{i} _{o}, T
^{i} _{o}all elements numerical value is also used T
^{i}corresponding replacement of all elements numerical value, upgraded T
^{i} _{o}, so just obtained correctly corresponding to A
^{i} _{o}u
^{i} _{o}and T
^{i} _{o}, now d
^{i} _{o}remain unchanged; When upgrading A
^{i} _{o}after, A
^{i} _{o}the current initial damage of the evaluation object vector d for health status of rope
^{i} _{o}represent A
^{i} _{o}current cable structure steady temperature data vector T for Cable Structure steady temperature
^{i} _{o}represent A
^{i} _{o}current initial Cable Structure bearing volume coordinate vector U for bearing volume coordinate
^{i} _{o}represent; Upgrade C
^{i} _{o}method be: when upgrade A
^{i} _{o}after, obtain A by Mechanics Calculation
^{i} _{o}in concrete numerical value all monitored amounts, current, these concrete numerical value compositions C
^{i} _{o};
H. at current initial mechanical calculating benchmark model A
^{i} _{o}basis on, carry out several times Mechanics Calculation according to step h1 to step h4, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating
^{i}with evaluation object unit change vector D
^{i} _{u};
H1. in the time that the i time circulation starts, directly press step h2 to the listed method acquisition of step h4 Δ C
^{i}and D
^{i} _{u}; In other moment, when in step g to A
^{i} _{o}after upgrading, must regain Δ C to the listed method of step h4 by step h2
^{i}and D
^{i} _{u}if, in step g not to A
^{i} _{o}upgrade, directly proceed to herein step I and carry out followup work;
H2. at current initial mechanical calculating benchmark model A
^{i} _{o}basis on carry out several times Mechanics Calculation, on calculation times numerical value, equal the quantity N of all evaluation objects, have N evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating each time hypothesis only has an evaluation object on the basis of original damage or load, to increase unit damage or load unit variation again, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is a load, just suppose that this load increases load unit again and changes, use D
^{i} _{uk}the unit damage or the load unit that record this increase change, and wherein k represents the numbering of the evaluation object that increases unit damage or load unit variation, D
^{i} _{uk}evaluation object unit change vector D
^{i} _{u}an element, evaluation object unit change vector D
^{i} _{u}coding rule and the vectorial d of element
_{o}the coding rule of element identical; The evaluation object that increases again unit damage or load unit variation in calculating is each time different from the evaluation object that increases again unit damage or load unit variation in other calculating, calculate each time the current calculated value that all utilizes mechanics method to calculate all monitored amounts of Cable Structure, a monitored amount calculation current vector of current calculated value composition of all monitored amounts that calculate each time; In the time that k evaluation object of hypothesis increases unit damage or load unit variation again, use C
^{i} _{tk}represent corresponding " monitored amount calculation current vector "; While giving in this step the element numbering of each vector, should use same coding rule with other vector in this method, to ensure any one element in each vector in this step, with in other vector, number identical element, expressed the relevant information of same monitored amount or same target; C
^{i} _{tk}definition mode and vectorial C
_{o}definition mode identical, C
^{i} _{tk}element and C
_{o}element corresponding one by one;
H3. the vectorial C calculating each time
^{i} _{tk}deduct vectorial C
^{i} _{o}obtain a vector, then each element of this vector is calculated after the unit damage supposed or load unit change numerical value and obtains " numerical value change vector δ a C for monitored amount divided by this
^{i} _{k}"; There is N evaluation object just to have N " the numerical value change vector of monitored amount ";
H4. by this N " the numerical value change vector of monitored amount " according to the coding rule of N evaluation object, composition has " the unit damage monitored numerical quantity transformation matrices Δ C that N is listed as successively
^{i}"; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}each be listed as corresponding to a monitored amount unit change vector; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}every a line corresponding to same monitored amount the different unit change amplitude in the time that different evaluation objects increase unit damage or load unit and change; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}coding rule and the vectorial d of row
_{o}the coding rule of element identical, unit damage monitored numerical quantity transformation matrices Δ C
^{i}the coding rule of coding rule and M monitored amount of row identical;
I. define the vectorial d of current name damage
^{i} _{c}with current actual damage vector d
^{i}, d
^{i} _{c}and d
^{i}element number equal the quantity of evaluation object, d
^{i} _{c}and d
^{i}element and evaluation object between be onetoone relationship, d
^{i} _{c}element numerical value represent nominal degree of injury or the nominal load variable quantity of corresponding evaluation object, d
^{i} _{c}and d
^{i}with evaluation object initial damage vector d
_{o}element coding rule identical, d
^{i} _{c}element, d
^{i}element and d
_{o}element be onetoone relationship;
J. according to monitored amount current value vector C
^{i}with " the current initial value vector of monitored amount C
^{i} _{o}", " unit damage monitored numerical quantity transformation matrices Δ C
^{i}" and " the vectorial d of current name damage
^{i} _{c}" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula 1, in formula 1 except d
^{i} _{c}other outer amount is known, solves formula 1 and just can calculate the vectorial d of current name damage
^{i} _{c};
K. the current actual damage vector d that utilizes formula 2 to express
^{i}k element d
^{i} _{k}with the current initial damage vector of evaluation object d
^{i} _{o}k element d
^{i} _{ok}with the vectorial d of current name damage
^{i} _{c}k element d
^{i} _{ck}between relation, calculate current actual damage vector d
^{i}all elements;
K=1 in formula 2,2,3 ..., N; d
^{i} _{k}represent the current actual health status of k evaluation object in the i time circulation, if this evaluation object is support cable, so a d in cable system
^{i} _{k}represent its current actual damage, d
^{i} _{k}be to represent not damaged at 0 o'clock, while being 100%, represent that this support cable thoroughly loses loadbearing capacity, between 0 and 100% time, represent to lose the loadbearing capacity of corresponding proportion; If this evaluation object is load, so a d
^{i} _{k}represent the actual change amount of this load; So far this method has realized and has rejected damaged cable identification impact, Cable Structure that support wire displacement, load change and structure temperature change, and has realized simultaneously and has rejected support wire displacement, structure temperature variation and identification support cable health status variable effect, load change amount;
L. try to achieve the vectorial d of current name damage
^{i} _{c}after, set up mark vector B according to formula 3
^{i}, formula 4 has provided mark vector B
^{i}the definition of k element;
Element B in formula 4
^{i} _{k}mark vector B
^{i}k element, D
^{i} _{uk}evaluation object unit change vector D
^{i} _{u}k element, d
^{i} _{ck}the vectorial d of the current name damage of evaluation object
^{i} _{c}k element, they all represent the relevant information of k evaluation object, k=1 in formula 4,2,3 ..., N;
If m. mark vector B
^{i}element be 0 entirely, get back to step f and continue this circulation; If mark vector B
^{i}element be not 0 entirely, enter next step, i.e. step n;
N. according to formula 5 calculate next time, i.e. the i+1 time current initial damage vector of the required evaluation object of circulation d
^{i+1} _{o}each element;
D in formula 5
^{i+1} _{ok}the current initial damage vector of the required evaluation object d that next time, circulates for the i+1 time
^{i+1} _{o}k element, d
^{i} _{ok}this, i.e. the current initial damage vector of the evaluation object of the i time circulation d
^{i} _{o}k element, D
^{i} _{uk}the evaluation object unit change vector D of the i time circulation
^{i} _{u}k element, B
^{i} _{k}the mark vector B of the i time circulation
^{i}k element, k=1 in formula 5,2,3,, N;
O. at initial mechanical calculating benchmark model A
_{o}basis on, first to A
_{o}in Cable Structure bearing apply support wire displacement constraint, the numerical value of support wire displacement constraint is just taken from the numerical value of corresponding element in support wire motion vector V, then to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d
^{i+1} _{o}after obtain be exactly next time, i.e. the i+1 time required Mechanics Calculation benchmark model A of circulation
^{i+1}; Obtain A
^{i+1}after, obtain A by Mechanics Calculation
^{i+1}in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation
^{i+1} _{o};
P. take off once, i.e. the i+1 time required current initial Cable Structure steady temperature data vector T of circulation
^{i+1} _{o}equal the current initial Cable Structure steady temperature data vector T of the i time circulation
^{i} _{o}; The required current initial Cable Structure bearing volume coordinate vector U of the i+1 time circulation next time, i.e.
^{i+1} _{o}equal the current initial Cable Structure bearing volume coordinate vector U of the i time circulation
^{i} _{o};
Q. get back to step f, start circulation next time.
Beneficial effect: this method has realized two kinds of functions that existing method can not possess, respectively: one, in the time of the displacement of Cable Structure generation support wire, when the load of bearing in structure and structure (environment) temperature variation, can reject the displacement of Cable Structure support wire, load change and structure temperature and change the impact on Cable Structure health status recognition result, thereby identify exactly the structure health monitoring method of damaged cable; Two, this method, in identifying damaged cable, can also identify the variation of load simultaneously, and this method can be rejected the impact that the displacement of Cable Structure support wire, structure temperature variation and support cable health status change, and realizes the correct identification of load change degree.
Embodiment
The following describes of the embodiment of this method is in fact only exemplary, and object is never to limit application or the use of this method.When concrete enforcement, the following step is the one in the various steps that can take.
The first step: the quantity of first confirming the load that may change that Cable Structure bears.The feature of the load of bearing according to Cable Structure, confirm wherein " load likely changing ", or all load is considered as " load likely changing ", if total JZW the load that may change, the variable quantity that this method is expressed " load likely changing " by the intensity of variation of identification this JZW " load likely changing ".
If the quantity sum of the quantity of the support cable of Cable Structure and JZW " load likely changing " is N.For sake of convenience, it is " evaluation object " that this method unitedly calls evaluated support cable and " load likely changing ", total N evaluation object.Give evaluation object serial number, this numbering will be used for generating vector sum matrix in subsequent step.
If total M in cable system
_{1}root support cable, structure rope force data comprises this M
_{1}the Suo Li of root support cable, obviously M
_{1}be less than the quantity N of evaluation object.Only pass through M
_{1}the M of root support cable
_{1}the state that individual rope force data solves a unknown N evaluation object is impossible, and this method is at the whole M of monitoring
_{1}on the basis of root supporting cable force, increase being no less than (NM
_{1}) individual other monitored amounts.
What increase is no less than (NM
_{1}) other individual monitored amounts remain Suo Li, be described below:
Before structural health detection system is started working, the first artificial M that increases in Cable Structure
_{2}(M
_{2}be not less than NM
_{1}) root rope, be called sensing rope, the M newly increasing
_{2}the rigidity of root sensing rope is compared with the rigidity of any support cable of Cable Structure, should be little a lot, for example little 20 times, and the M newly increasing
_{2}the Suo Li of root sensing rope should be less, and for example its xsect normal stress should be less than its fatigue limit, and these requirements can ensure the M newly increasing
_{2}can there is not fatigue damage, the M newly increasing in root sensing rope
_{2}the fully anchoring of two ends of root sensing rope, guarantee there will not be lax, the M newly increasing
_{2}root sensing rope should obtain sufficient anticorrosion protection, ensures the M newly increasing
_{2}can there is not damage and lax in root sensing rope, in monitoring structural health conditions process, will monitor this M newly increasing
_{2}the Suo Li of root sensing rope.
Can also adopt the modes that increase sensing rope to ensure the reliability of health monitoring more, for example, make M
_{2}be not less than NM
_{1}2 times, the rope force data of only selecting intact sensing rope wherein in monitoring structural health conditions process (is called actual operable monitored amount, recording its quantity is K, and K must not be less than N) and the corresponding monitored amount unit change of Cable Structure matrix Δ C carry out health status assessment, due to M
_{2}be not less than NM
_{1}2 times, can ensure that the quantity of actual operable effective sensing rope adds M
_{1}be not less than N.In monitoring structural health conditions process, this M newly increasing will be monitored
_{2}the Suo Li of root sensing rope.The M newly increasing
_{2}root sensing rope should be installed structurally, personnel are easy to the position arriving, and is convenient to personnel it is carried out to NonDestructive Testing.
The M newly increasing in the method
_{2}root sensing rope is as a part for Cable Structure, and while hereinafter mentioning Cable Structure again, Cable Structure comprises increases M
_{2}cable Structure before root sensing rope and the M newly increasing
_{2}root sensing rope, that is to say and while hereinafter mentioning Cable Structure, refer to comprise the M newly increasing
_{2}the Cable Structure of root sensing rope.Therefore hereinafter mention while calculating " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " measurement, Cable Structure wherein comprises the M newly increasing
_{2}root sensing rope, " the Cable Structure steady temperature data " that obtain comprise the M newly increasing
_{2}the steady temperature data of root sensing rope, obtain the M newly increasing
_{2}the method of the steady temperature data of root sensing rope is same as the M of Cable Structure
_{1}the preparation method of the steady temperature data of root support cable, later explanation no longer one by one; Measure the M newly increasing
_{2}the method of the Suo Li of root sensing rope is same as the M of Cable Structure
_{1}the rope force measurement method of root support cable, later explanation no longer one by one; When the support cable of Cable Structure is carried out to any measurement, simultaneously to the M newly increasing
_{2}root sensing rope carries out same measurement, later explanation no longer one by one; The M newly increasing
_{2}root sensing rope except do not occur damage and lax, the M newly increasing
_{2}the quantity of information of root rope is identical with the quantity of information of the support cable of Cable Structure, later explanation no longer one by one; The M newly increasing
_{2}the Suo Li of root sensing rope is exactly the (NM that is no less than increasing
_{1}) other individual monitored amounts.While setting up later the various mechanical model of Cable Structure, by the M newly increasing
_{2}root sensing rope is treated as the support cable of Cable Structure and is treated, and except mentioning the damage of support cable and lax occasion, comprises the M newly increasing in the time that other occasions are mentioned support cable
_{2}root rope.
Comprehensive abovementioned monitored amount, whole Cable Structure has M(M=M
_{1}+ M
_{2}) M the monitored amount of root rope, M must not be less than the quantity N of evaluation object.
For simplicity, in the method by " monitored all parameters of Cable Structure " referred to as " monitored amount ".Give M monitored amount serial number, this numbering will be used for generating vector sum matrix in subsequent step.This method is with representing this numbering with variable j, j=1, and 2,3 ..., M.
According to the method providing in technical scheme and claims, adopt conventional method, determine " the temperature survey calculating method of the Cable Structure of this method ".
Second step: set up initial mechanical calculating benchmark model A
_{o}.
In Cable Structure completion, or setting up before health monitoring systems, calculating " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " measurement (can measure by conventional thermometry, for example use thermal resistance to measure), " Cable Structure steady temperature data " now use vector T
_{o}represent, be called initial Cable Structure steady temperature data vector T
_{o}.Obtain T in actual measurement
_{o}time, namely at the synchronization in moment that obtains initial Cable Structure steady temperature data vector, use conventional method directly to measure the initial value of all monitored amounts that calculate Cable Structure, form monitored amount initial value vector C
_{o}.
Can be specifically in this method obtaining the synchronization in moment of soandso Cable Structure steady temperature data vector such as (such as initial or current) according to following method, use soandso method measurement to calculate the data of the monitored amount of soandso measured amount (all monitored amount of for example Cable Structure): (to comprise the temperature of Cable Structure place environment in survey record temperature, the temperature of the sunny slope of reference plate and Cable Structure surface temperature) time, for example, every temperature of 10 minutes survey records, so simultaneously equally also every 10 minutes the monitored amount of soandso measured amount of survey record (all monitored amount of for example Cable Structure) data.Once determine the moment that obtains Cable Structure steady temperature data, for example, be just called and obtaining the synchronization in moment of Cable Structure steady temperature data with the data of the monitored amount of soandso measured amount (all monitored amount of Cable Structure) of moment synchronization that obtain Cable Structure steady temperature data so, use soandso method to measure the data of the monitored amount of soandso measured amount that computing method obtain.
Use conventional method (consult reference materials or survey) to obtain temperature variant physical parameter (for example thermal expansivity) and the mechanical property parameters (for example elastic modulus, Poisson ratio) of the various materials that Cable Structure uses.
Obtain initial Cable Structure steady temperature data vector T at Actual measurement
_{o}time, use conventional method Actual measurement to obtain the Actual measurement data of Cable Structure.The Actual measurement data of Cable Structure comprise that Nondestructive Testing Data of support cable etc. can express the data of the health status of rope, the initial geometric data of Cable Structure, rope force data, drawbar pull data, initial Cable Structure bearing generalized coordinate data (initial Cable Structure bearing generalized coordinate data comprise initial Cable Structure bearing spatial data and initial Cable Structure bearing angular data), Cable Structure centrepoint load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, Cable Structure modal data, structural strain data, structure angle measurement data, the measured datas such as structure space measurement of coordinates data.Initial Cable Structure bearing spatial data forms initial Cable Structure bearing volume coordinate vector U
_{o}.The initial geometric data of Cable Structure can be the spatial data that the spatial data of the end points of all ropes adds a series of point in structure, and object is to determine according to these coordinate datas the geometric properties of Cable Structure.For cablestayed bridge, the spatial data that initial geometric data can be the end points of all ropes adds the spatial data of some points on bridge two ends, socalled bridge type data that Here it is.Data and the Cable Structure load measurement data of utilizing the Nondestructive Testing Data etc. of support cable can express the health status of support cable are set up evaluation object initial damage vector d
_{o}, use d
_{o}represent that Cable Structure is (with initial mechanical calculating benchmark model A
_{o}represent) the initial health of evaluation object.If while not having the Nondestructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d
_{o}in the each element numerical value relevant to support cable get 0, if d
_{o}evaluation object corresponding to some elements be some load, in this method, get d
_{o}this element numerical value be 0, the initial value that represents the variation of this load is 0.Utilize the Nondestructive Testing Data of the design drawing, asconstructed drawing of Cable Structure and the measured data of initial Cable Structure, support cable, temperature variant physical and mechanical properties parameter, the initial Cable Structure bearing volume coordinate vector U of various materials that Cable Structure is used
_{o}with initial Cable Structure steady temperature data vector T
_{o}, utilize mechanics method (for example finite element method) to count " Cable Structure steady temperature data " and set up initial mechanical calculating benchmark model A
_{o}.
No matter which kind of method to obtain initial mechanical calculating benchmark model A by
_{o}, counting " Cable Structure steady temperature data " (is initial Cable Structure steady temperature data vector T
_{o}), based on A
_{o}the Cable Structure computational data calculating must approach its measured data very much, and error generally must not be greater than 5%.Like this can utility A
_{o}calculate Suo Li computational data, strain computational data, Cable Structure shape computational data and displacement computational data under the analog case of gained, Cable Structure angledata, Cable Structure spatial data etc., the measured data when approaching reliably institute's analog case and truly occurring.Model A
_{o}evaluation object initial damage vector d for the health status of middle support cable
_{o}represent initial Cable Structure steady temperature data vector T for Cable Structure steady temperature data
_{o}represent.Due to based on A
_{o}the evaluation that calculates all monitored amounts approaches the initial value (actual measurement obtains) of all monitored amounts very much, so also can be used in A
_{o}basis on, carry out Mechanics Calculation obtains, A
_{o}the evaluation of each monitored amount form monitored amount initial value vector C
_{o}.Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}evaluation object initial damage vector d for evaluation object health status
_{o}represent; Corresponding to A
_{o}monitored amount initial value vector C for the initial value of all monitored amounts
_{o}represent.Corresponding to A
_{o}initial Cable Structure bearing volume coordinate vector U for Cable Structure bearing spatial data
_{o}represent; T
_{o}, U
_{o}and d
_{o}a
_{o}parameter, C
_{o}by A
_{o}mechanics Calculation result composition.
The 3rd step: in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A
^{i} _{o}, A
_{o}and A
^{i} _{o}count temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A
^{i} _{o}" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T
^{i} _{o}represent vector T
^{i} _{o}definition mode and vector T
_{o}definition mode identical, T
^{i} _{o}element and T
_{o}element corresponding one by one; That the i time circulation needs while beginning, corresponding to the current initial mechanical calculating benchmark model A of Cable Structure
^{i} _{o}the current initial Cable Structure bearing volume coordinate vector U of Cable Structure bearing spatial data composition
^{i} _{o}, set up for the first time the current initial mechanical calculating benchmark model A of Cable Structure
^{i} _{o}time, U
^{i} _{o}just equal U
_{o}.The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d
^{i} _{o}, d
^{i} _{o}cable Structure A while representing this circulation beginning
^{i} _{o}the health status of evaluation object, d
^{i} _{o}definition mode and d
_{o}definition mode identical, d
^{i} _{o}element and d
_{o}element corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C
^{i} _{o}represent vectorial C
^{i} _{o}definition mode and vectorial C
_{o}definition mode identical, C
^{i} _{o}element and C
_{o}element corresponding one by one, the current initial value vector of monitored amount C
^{i} _{o}represent corresponding to A
^{i} _{o}the concrete numerical value of all monitored amounts; T
^{i} _{o}and d
^{i} _{o}a
^{i} _{o}characterisitic parameter; C
^{i} _{o}by A
^{i} _{o}mechanics Calculation result composition; When circulation starts for the first time, A
^{i} _{o}be designated as A
^{1} _{o}, set up A
^{1} _{o}method for making A
^{1} _{o}equal A
_{o}; When circulation starts for the first time, T
^{i} _{o}be designated as T
^{1} _{o}, set up T
^{1} _{o}method for making T
^{1} _{o}equal T
_{o}; When circulation starts for the first time, U
^{i} _{o}be designated as U
^{1} _{o}, set up U
^{1} _{o}method for making U
^{1} _{o}equal U
_{o}; When circulation starts for the first time, d
^{i} _{o}be designated as d
^{1} _{o}, set up d
^{1} _{o}method for making d
^{1} _{o}equal d
_{o}; When circulation starts for the first time, C
^{i} _{o}be designated as C
^{1} _{o}, set up C
^{1} _{o}method for making C
^{1} _{o}equal C
_{o}.
The 4th step: the hardware components of pass line structural healthy monitoring system.Hardware components at least comprises: monitored amount monitoring system (for example, containing cable force measurement system, signal conditioner etc.), Cable Structure bearing space coordinate monitoring system (for example measuring with total powerstation), Cable Structure temperature monitoring system (containing temperature sensor, signal conditioner etc.) and Cable Structure ambient temperature measurement system (containing temperature sensor, signal conditioner etc.), signal (data) collector, computing machine and the panalarm of communicating by letter.Bearing volume coordinate, each temperature of each monitored amount, each Cable Structure must arrive by monitored system monitoring, and the signal monitoring is transferred to signal (data) collector by monitoring system; Signal is delivered to computing machine through signal picker; Computing machine is responsible for the health monitoring software of the evaluation object of operation Cable Structure, comprises the signal that the transmission of tracer signal collector comes; In the time monitoring evaluation object health status and change, computer control communication panalarm is reported to the police to the personnel of monitor staff, owner and (or) appointment.
The 5th step: establishment the system software of installation and operation this method on computers, this software will complete the functions (being all work that can complete with computing machine in this specific implementation method) such as monitoring that this method required by task wants, record, control, storage, calculating, notice, warning.
The 6th step: step starts circulation running thus, in structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data "
^{i}, vector T
^{i}definition mode and vector T
_{o}definition mode identical, T
^{i}element and T
_{o}element corresponding one by one; In actual measurement vector T
^{i}time, namely obtaining current cable structure steady temperature data vector T
^{i}the synchronization in moment, actual measurement obtains the currency of all monitored amounts in Cable Structure, all these numerical value form monitored amount current value vector C
^{i}, vectorial C
^{i}definition mode and vectorial C
_{o}definition mode identical, C
^{i}element and C
_{o}element corresponding one by one, represent that identical monitored amount is at numerical value in the same time not.
Obtain current cable structure steady temperature data vector T in actual measurement
^{i}time, actual measurement obtains Cable Structure bearing volume coordinate current data, all data composition current cable structure actual measurement bearing volume coordinate vector U
^{i}.
Obtain current cable structure steady temperature data vector T in actual measurement
^{i}time, to the M newly increasing
_{2}root sensing rope carries out NonDestructive Testing, for example UT (Ultrasonic Testing), visual examination, infrared imaging checks, therefrom identify and occur damage or lax sensing rope, according to monitored amount coding rule, what before this method, occur damages with the appearance identifying or lax element corresponding to sensing rope according to removing each vector of monitored amount coding rule numbering, also the appearance damage no longer occurring in the each vector sum matrix occurring after this method and identify or lax element corresponding to sensing rope, mention sensing rope after this method time, no longer comprise being identified here and occur damage or lax sensing rope, mention monitored amount after this method time, no longer comprise and be identified the Suo Li that occurs damage or lax sensing rope here, identify several from Cable Structure and occur damage or lax sensing rope, just by M
_{2}reduce same quantity with M.
The 7th step: obtaining current cable structure actual measurement bearing volume coordinate vector U
^{i}with current cable structure steady temperature data vector T
^{i}after, compare respectively U
^{i}and U
^{i} _{o}, T
^{i}and T
^{i} _{o}if, U
^{i}equal U
^{i} _{o}and T
^{i}equal T
^{i} _{o}, do not need A
^{i} _{o}, U
^{i} _{o}and T
^{i} _{o}upgrade, otherwise need to be to current initial mechanical calculating benchmark model A
^{i} _{o}, current initial Cable Structure bearing volume coordinate vector U
^{i} _{o}, current initial Cable Structure steady temperature data vector T
^{i} _{o}with the current initial value vector of monitored amount C
^{i} _{o}upgrade, and the current initial damage vector of evaluation object d
^{i} _{o}remain unchanged, update method is undertaken by regulation step in technical scheme and claims.
The 8th step: at current initial mechanical calculating benchmark model A
^{i} _{o}basis on, carry out several times Mechanics Calculation according to regulation step in technical scheme and claims, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating
^{i}with evaluation object unit change vector D
^{i} _{u}.Wherein, can get 5%, 10%, 20% or 30% equivalent damage is unit damage, load unit changes as the case may be to be determined, if this load is distributed load, and this distributed load is line distributed load, load unit changes can get 1kN/m, 2kN/m, 3kN/m or 1kNm/m, 2kNm/m, 3kNm/m etc. for unit change, if this load is distributed load, and this distributed load is face distributed load, load unit changes can get 1MPa, 2MPa, 3MPa or 1kNm/m
^{2}, 2kNm/m
^{2}, 3kNm/m
^{2}deng being unit change, if this load is centrepoint load, and this centrepoint load is couple, load unit changes can get 1kNm, 2kNm, 3kNm etc. for unit change, if this load is centrepoint load, and this centrepoint load is concentrated force, and load unit changes can get 1kN, 2kN, 3kN etc. for unit change, if this load is volume load, load unit changes can get 1kN/m
^{3}, 2kN/m
^{3}, 3kN/m
^{3}deng being unit change.
The 9th step: set up linear relationship error vector e
^{i}with vectorial g
^{i}.Utilize data (" the current initial value vector of monitored amount C above
^{i} _{o}", " unit damage monitored numerical quantity transformation matrices Δ C
^{i}"); when the 8th step is calculated each time; in calculating each time the increase unit damage or load unit variation of only having an evaluation object in hypothesis evaluation object; when hypothesis k(k=1,2,3; ..., N) when individual evaluation object increases unit damage or load unit variation, calculate each time damage vector of composition, use d
^{i} _{tk}represent this damage vector, corresponding monitored amount calculation current vector is C
^{i} _{tk}(referring to the 8th step), damages vectorial d
^{i} _{tk}element number equal the quantity of evaluation object, vectorial d
^{i} _{tk}all elements in only have the numerical value of an element to get to calculate each time in hypothesis increase unit damage or the load unit changing value of the evaluation object that unit damage or load unit change, d
^{i} _{tk}the numerical value of other element get 0, that is not that numbering and the supposition of 0 element increases the corresponding relation of the evaluation object that unit damage or load unit change, is identical with the element of the same numbering of other vectors with the corresponding relation of this evaluation object; d
^{i} _{tk}with evaluation object initial damage vector d
_{o}element coding rule identical, d
^{i} _{tk}element and d
_{o}element be onetoone relationship.By C
^{i} _{tk}, C
^{i} _{o}, Δ C
^{i}, d
^{i} _{tk}bring formula (1) into, obtain a linear relationship error vector e
^{i} _{k}, calculate each time a linear relationship error vector e
^{i} _{k}; e
^{i} _{k}subscript k represent k(k=1,2,3 ..., N) and individual evaluation object increases unit damage or load unit changes.There is N evaluation object just to have N calculating, just have N linear relationship error vector e
^{i} _{k}, by this N linear relationship error vector e
^{i} _{k}after addition, obtain a vector, the new vector that each element of this vector is obtained after divided by N is exactly final linear relationship error vector e
^{i}.Vector g
^{i}equal final error vector e
^{i}.By vectorial g
^{i}be kept on the hard disc of computer of operation health monitoring systems software, for health monitoring systems software application.
The tenth step: define the vectorial d of current name damage
^{i} _{c}with current actual damage vector d
^{i}, d
^{i} _{c}and d
^{i}element number equal the quantity of evaluation object, d
^{i} _{c}and d
^{i}element and evaluation object between be onetoone relationship, d
^{i} _{c}and d
^{i}element numerical value represent degree of injury or the load change degree of corresponding evaluation object, d
^{i} _{c}and d
^{i}with evaluation object initial damage vector d
_{o}element coding rule identical, d
^{i} _{c}element, d
^{i}element and d
_{o}element be onetoone relationship.
The 11 step: according to monitored amount current value vector C
^{i}with " the current initial value vector of monitored amount C
^{i} _{o}", " unit damage monitored numerical quantity transformation matrices Δ C
^{i}" and " the vectorial d of current name damage
^{i} _{c}" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula (2), calculates the vectorial d of current name damage according to multiobjective optimization algorithm
^{i} _{c}noninferior solution, namely with reasonable error but can be more exactly determine the position of damaged cable and the solution of nominal degree of injury thereof from all ropes.
Can adopt the Objective Programming (Goal Attainment Method) in multiobjective optimization algorithm to solve the vectorial d of current name damage
^{i} _{c}, according to Objective Programming, formula (2) can transform the multiobjective optimization question shown in an accepted way of doing sth (3) and formula (4), and in formula (3), γ is a real number, and R is real number field, and area of space Ω has limited vectorial d
^{i} _{c}the span of each element.The meaning of formula (3) is to find a minimum real number γ, and formula (4) is met.G (d in formula (4)
^{i} _{c}) by formula (5) definition, G (d in the product representation formula (4) of weighing vector W and γ in formula (4)
^{i} _{c}) and vectorial g
^{i}between allow deviation.When actual computation vector W can with vectorial g
^{i}identical.The concrete programming of Objective Programming realizes has had universal program directly to adopt.Use Objective Programming just can damage vectorial d in the hope of current name
^{i} _{c}.
The 12 step: according to the current actual damage vector of cable system d
^{i}definition and the definition of its element calculate current actual damage vector d
^{i}each element, thereby can be by d
^{i}determine the health status of evaluation object.Current actual damage vector d
^{i}k element d
^{i} _{k}represent the current actual health status of k evaluation object in the i time circulation.
D
^{i} _{k}represent the current actual health status of k evaluation object in the i time circulation: if this evaluation object is a support cable in cable system, d so
^{i} _{k}represent its current actual damage, d
^{i} _{k}be to represent not damaged at 0 o'clock, while being 100%, represent that this support cable thoroughly loses loadbearing capacity, between 0 and 100% time, represent to lose the loadbearing capacity of corresponding proportion; If this evaluation object is load, so a d
^{i} _{k}represent that its current real load changes numerical value, so according to the current actual damage vector of evaluation object d
^{i}can define the impaired and degree of injury of which support cable, define which load variation and numerical value thereof have occurred.
The 13 step: the computing machine in health monitoring systems regularly generates cable system health condition form automatically or by personnel's operational health monitoring system.
The 14 step: under specified requirements, the computing machine automatic operation communication panalarm in health monitoring systems is reported to the police to the personnel of monitor staff, owner and (or) appointment.
The 15 step: set up mark vector B
^{i}if, mark vector B
^{i}element be 0 entirely, get back to the 6th step and proceed health monitoring and the calculating to cable system; If mark vector B
^{i}element be not 0 entirely, complete after subsequent step, enter next time circulation.
The 16 step: calculate next time (the i+1 time, i=1,2,3,4 ...) circulate initial damage vector d required
^{i+1} _{o}each element d
^{i+1} _{ok}(k=1,2,3 ..., N); At initial mechanical calculating benchmark model A
_{o}basis on, first to A
_{o}in Cable Structure bearing apply support wire displacement constraint, the numerical value of support wire displacement constraint is just taken from the numerical value of corresponding element in support wire motion vector V, then to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d
^{i+1} _{o}after obtain be exactly next time, the i+1 time (i=1,2,3,4 ...) circulate Mechanics Calculation benchmark model A required
^{i+1}; Next time (the i+1 time, i=1,2,3,4 ...) required current initial Cable Structure steady temperature data vector T circulates
^{i+1} _{o}equal T
^{i} _{o}, next time (the i+1 time, i=1,2,3,4 ...) required current initial Cable Structure bearing volume coordinate vector U circulates
^{i+1} _{o}equal U
^{i} _{o}.Obtain A
^{i+1}, d
^{i+1} _{o}, U
^{i+1} _{o}and T
^{i+1} _{o}after, obtain A by Mechanics Calculation
^{i+1}in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation
^{i+1} _{o}.
The 17 step: get back to the 6th step, start the circulation by the 6th step to the 17 steps.
Claims (1)
1. the laddering recognition methods of displacement of the lines cable force monitoring damaged cable load, is characterized in that described method comprises:
A. for sake of convenience, it is evaluation object that this method unitedly calls evaluated support cable and load, establishes the quantity of evaluated support cable and the quantity sum of load is N, and the quantity of evaluation object is N; Determine the coding rule of evaluation object, by this rule, by evaluation object numberings all in Cable Structure, this numbering will be used for generating vector sum matrix in subsequent step; This method represents this numbering with variable k, k=1, and 2,3 ..., N; If total M in cable system
_{1}root support cable, Cable Structure rope force data comprises this M
_{1}the Suo Li of root support cable, obviously M
_{1}be less than the quantity N of evaluation object; Only pass through M
_{1}the M of individual support cable
_{1}the state that individual rope force data solves a unknown N evaluation object is impossible, and this method is at the whole M of monitoring
_{1}on the basis of root supporting cable force, the artificial M that increases in Cable Structure
_{2}root rope, is called sensing rope, in cable structure health monitoring process, will monitor this M newly increasing
_{2}the Suo Li of root sensing rope; Comprehensive abovementioned monitored amount, M Suo Li of the total M root rope of whole Cable Structure is monitored, has M monitored amount, and wherein M is M
_{1}with M
_{2}sum; M should be greater than the quantity N of evaluation object; The M newly increasing
_{2}the rigidity of root sensing rope is compared with the rigidity of any support cable of Cable Structure, should be much smaller; The M newly increasing
_{2}the Suo Li of each sensing rope of root sensing rope should be more much smaller than the Suo Li of any support cable of Cable Structure, even if can ensure like this M that this newly increases
_{2}there is damage or lax in root sensing rope, the impact of stress on other members of Cable Structure, strain, distortion is very little; The M newly increasing
_{2}on the xsect of root sensing rope, normal stress should be less than its fatigue limit, and these requirements can ensure the M newly increasing
_{2}can there is not fatigue damage in root sensing rope; The M newly increasing
_{2}the fully anchoring of two ends of root sensing rope, ensures there will not be lax; The M newly increasing
_{2}root sensing rope should obtain sufficient anticorrosion protection, ensures the M newly increasing
_{2}can there is not damage and lax in root sensing rope; For simplicity, in the method by " monitored all parameters of Cable Structure " referred to as " monitored amount "; Give M monitored amount serial number, this method is with representing this numbering with variable j, j=1, and 2,3 ..., M, this numbering will be used for generating vector sum matrix in subsequent step; The M newly increasing in the method
_{2}root sensing rope is as a part for Cable Structure, and while hereinafter mentioning Cable Structure again, Cable Structure comprises increases M
_{2}cable Structure before root sensing rope and the M newly increasing
_{2}root sensing rope, that is to say and while hereinafter mentioning Cable Structure, refer to comprise the M newly increasing
_{2}the Cable Structure of root sensing rope; Therefore hereinafter mention while calculating " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " measurement, Cable Structure wherein comprises the M newly increasing
_{2}root sensing rope, " the Cable Structure steady temperature data " that obtain comprise the M newly increasing
_{2}the steady temperature data of root sensing rope, obtain the M newly increasing
_{2}the method of the steady temperature data of root sensing rope is same as the M of Cable Structure
_{1}the preparation method of the steady temperature data of root support cable, later explanation no longer one by one; Measure the M newly increasing
_{2}the method of the Suo Li of root sensing rope is same as the M of Cable Structure
_{1}the rope force measurement method of root support cable, later explanation no longer one by one; When the support cable of Cable Structure is carried out to any measurement, simultaneously to the M newly increasing
_{2}root sensing rope carries out same measurement, later explanation no longer one by one; The M newly increasing
_{2}in root sensing rope except not there is not damage and relaxing, to the M newly increasing
_{2}the requirement of the quantity of information of root sensing rope is identical with requirement and the preparation method of the quantity of information of the support cable of Cable Structure with preparation method, later explanation no longer one by one; While setting up later the various mechanical model of Cable Structure, by the M newly increasing
_{2}root sensing rope is treated as the support cable of Cable Structure and is treated; Below, except mentioning the damage and lax occasion of support cable, in the time mentioning support cable, said support cable comprises the support cable of Cable Structure and the M newly increasing
_{2}root sensing rope; In this method, must not be greater than 30 minutes to the time interval between any twice measurement of same amount RealTime Monitoring, the moment of survey record data is called the physical record data moment; The external force that object, structure are born can be described as load, and load comprises face load and volume load; Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centrepoint load and distributed loads; Volume load is that continuous distribution is in the load of interior of articles each point, including the deadweight and inertial force of object; Centrepoint load is divided into two kinds of concentrated force and concentrated couples, comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centrepoint load, in the method a concentrated force component or a concentrated couple component being counted or added up is a load, and the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component; Distributed load is divided into line distributed load and face distributed load, and the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, and the size of distributed load is expressed by distribution intensity, and distribution intensity is expressed by distribution characteristics and amplitude; If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a distributed load can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this distributed load changes, and the ratio changing is all not identical, so in the method three components of this distributed load being counted or added up is three distributed loads, and now load just represents the onecomponent of distributed load; Volume load be continuous distribution in the load of interior of articles each point, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution intensity is expressed by distribution characteristics and amplitude; If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, one individual stow lotus can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this volume load changes, and the ratio changing is all not identical, and so in the method three components of this volume load being counted or added up is three distributed loads;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of Cable Structure composition material and Cable Structure environment of living in, utilize the geometry measured data of design drawing, asconstructed drawing and the Cable Structure of Cable Structure, utilize these data and parameter to set up the thermal conduction study computation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, statistics obtains interior during this period of time cloudy quantity and is designated as T cloudy day, in the method can not be seen to one of the sun daytime and be called all day the cloudy day, statistics obtain each cloudy day in T cloudy day 0 after the sunrise moment next day highest temperature and the lowest temperature between 30 minutes, the sunrise moment on the meteorology that the sunrise moment refers to base area revolutions and the rule that revolves round the sun is definite, do not represent necessarily can see the same day sun, can inquire about data or calculate sunrise moment of each required day by conventional meteorology, each cloudy day 0 after the sunrise moment next day highest temperature between 30 minutes deduct the maximum temperature difference that the lowest temperature is called this cloudy daily temperature, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, get maximal value in the maximum temperature difference of daily temperature at T cloudy day for reference to temperature difference per day, be designated as Δ T with reference to temperature difference per day
_{r}, between inquiry Cable Structure location and Altitude Region, place, be no less than temperature that the meteorological data in recent years of 2 years or actual measurement obtain Cable Structure environment of living in time with delta data and the Changing Pattern of sea level elevation, calculate the temperature of the Cable Structure environment of living in recent years that is no less than 2 years between Cable Structure location and Altitude Region, place about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of narration
_{h}unit be DEG C/m, on the surface of Cable Structure, get " R Cable Structure surface point ", get the Specific Principles of " R Cable Structure surface point " narrates in step b3, the temperature of this R Cable Structure surface point will be obtained by actual measurement below, claim that the temperature data that actual measurement obtains is " R Cable Structure surface temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim that the temperature data calculating is " R Cable Structure surface temperature computational data ", from the residing minimum height above sea level of Cable Structure to the highest height above sea level, in Cable Structure, uniform choosing is no less than three different sea level elevations, the sea level elevation place choosing at each, at least choose two points at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions of choosing are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in the measurement Cable Structure of choosing along comprising the sunny slope outer normal direction of Cable Structure and in the shade outer normal direction of Cable Structure in the direction of the Temperature Distribution of wall thickness, measure Cable Structure along each and be no less than three points along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, measure all temperature that are selected a little, the temperature recording is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " and measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if chosen H different sea level elevation, at each sea level elevation place, choose B and measured the direction of Cable Structure along the Temperature Distribution of wall thickness, direction along each measurement Cable Structure along the Temperature Distribution of wall thickness has been chosen E point in Cable Structure, wherein H and E are not less than 3, B is not less than 2, if HBE is the product of H and B and E, corresponding total HBE " measuring the point of Cable Structure along the temperature profile data of thickness ", to obtain by actual measurement the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " below, claim that the temperature data that actual measurement obtains is " HBE Cable Structure is along thickness temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, just claim that the temperature data calculating is " HBE Cable Structure is along thickness temperature computation data ", if BE is the product of B and E, total BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " in sea level elevation place of choosing at each in this method, measure temperature in Cable Structure location according to meteorology and require to choose a position, will obtain the temperature of the Cable Structure place environment that meets the requirement of meteorology measurement temperature in this position actual measurement, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of getable this day, at the flat board of a carbon steel material of this position of sound production, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse and dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of getable this day, the nonsunny slope of reference plate is covered with insulation material, RealTime Monitoring is obtained to the temperature of the sunny slope of reference plate,
B2: RealTime Monitoring obtains R Cable Structure surface temperature measured data of abovementioned R Cable Structure surface point, RealTime Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and RealTime Monitoring obtains the temperature record of the Cable Structure place environment that meets the requirement of meteorology measurement temperature simultaneously, obtain being carved at sunrise the same day temperature measured data sequence of the Cable Structure place environment between 30 minutes after sunrise moment next day by RealTime Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data that was carved at sunrise the Cable Structure place environment between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the temperature measured data sequence of Cable Structure place environment, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains Cable Structure place environment by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T
_{emax}, temperature measured data sequence by Cable Structure place environment obtains the temperature of Cable Structure place environment about the rate of change of time by conventional mathematical computations, and this rate of change is also along with the time changes, obtain being carved at sunrise the same day measured data sequence of the temperature of the sunny slope of the reference plate between 30 minutes after sunrise moment next day by RealTime Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data that was carved at sunrise the temperature of the sunny slope of the reference plate between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the measured data sequence of temperature of the sunny slope of reference plate, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of the sunny slope of reference plate by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T
_{pmax}, obtain being carved at sunrise the same day Cable Structure surface temperature measured data sequence of all R Cable Structure surface points between 30 minutes after sunrise moment next day by RealTime Monitoring, there is R Cable Structure surface point just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by being carved at sunrise the Cable Structure surface temperature measured data between 30 minutes after the sunrise moment next day same day of a Cable Structure surface point, find maximum temperature and minimum temperature in each Cable Structure surface temperature measured data sequence, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of each Cable Structure surface point by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T
_{smax}, obtain the temperature of each Cable Structure surface point about the rate of change of time by each Cable Structure surface temperature measured data sequence by conventional mathematical computations, the temperature of each Cable Structure surface point about the rate of change of time also along with the time changes, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the sea level elevation place that chooses at each and amount to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and the difference of minimum temperature, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", choose H different sea level elevation and just had H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", claim that the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax},
B3: measure and calculate acquisition Cable Structure steady temperature data, first, determine the moment that obtains Cable Structure steady temperature data, the condition relevant to the moment that determines acquisition Cable Structure steady temperature data has six, Section 1 condition be obtain Cable Structure steady temperature data moment after being carved at sunset sunrise moment next day between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the definite meteorology of revolution rule, can inquire about data or calculate sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, reference plate maximum temperature difference Δ T
_{pmax}with Cable Structure surface maximum temperature difference Δ T
_{smax}all be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, measure the environment maximum error Δ T that calculates above
_{emax}be not more than with reference to temperature difference per day Δ Tr, and reference plate maximum temperature difference Δ T
_{pmax}after deducting 2 degrees Celsius, be not more than Δ T
_{emax}, and Cable Structure surface maximum temperature difference Δ T
_{smax}be not more than Δ T
_{pmax}, only need meet in a condition of Section 2 and b condition one is just called and meets Section 2 condition, Section 3 condition is that the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 4 condition is that the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 5 condition is in the moment that obtains Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is to be carved at sunrise the minimal value between 30 minutes after the sunrise moment next day same day, Section 6 condition is at the moment that obtains Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius, this method is utilized abovementioned six conditions, any one in following three kinds of moment is called to " the mathematics moment that obtain Cable Structure steady temperature data ", the first moment is to meet Section 1 in abovementioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 5 condition, the second moment is the moment that only meets the Section 6 condition in abovementioned " condition relevant to the moment that determines acquisition Cable Structure steady temperature data ", the third moment is to meet Section 1 in abovementioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 6 condition simultaneously, be exactly in this method when one in the physical record data moment when obtaining the mathematics moment of Cable Structure steady temperature data, the moment that obtains Cable Structure steady temperature data is exactly the mathematics moment that obtains Cable Structure steady temperature data, be not any moment in the physical record data moment in this method if obtain the mathematics moment of Cable Structure steady temperature data, getting this method is the moment that obtains Cable Structure steady temperature data close to moment of those physical record data in the mathematics moment that obtains Cable Structure steady temperature data, this method will be used the amount at the moment survey record that obtains Cable Structure steady temperature data to carry out the relevant health monitoring analysis of Cable Structure, this method is approximate thinks that the Cable Structure temperature field in moment of obtaining Cable Structure steady temperature data is in stable state, i.e. the not temporal evolution of Cable Structure temperature in this moment, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment that obtains Cable Structure steady temperature data, utilize the thermal conduction study computation model of Cable Structure, obtain obtaining the Temperature Distribution of Cable Structure in moment of Cable Structure steady temperature data by conventional Calculation of Heat Transfer, now calculate by stable state in the temperature field of Cable Structure, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called R Cable Structure stable state surface temperature computational data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure is along thickness temperature computation data ", in the time of R Cable Structure surface temperature measured data and R Cable Structure stable state surface temperature computational data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure is along thickness temperature computation data " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure stable state surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", get " R Cable Structure surface point " on the surface of Cable Structure time, the quantity of " R Cable Structure surface point " and necessary three conditions that meet that distribute, first condition is when Cable Structure temperature field is during in stable state, when the temperature of any point on Cable Structure surface be by " R Cable Structure surface point " in Cable Structure surface on the observed temperature linear interpolation of the adjacent point in this arbitrfary point while obtaining, on the Cable Structure surface that linear interpolation obtains, on the temperature of this arbitrfary point and Cable Structure surface, the error of the actual temperature of this arbitrfary point is not more than 5%, Cable Structure surface comprises support cable surface, second condition is that in " R Cable Structure surface point ", the quantity at the point of same sea level elevation is not less than 4, and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtaining, gets Δ T for convenience of narration
_{h}unit be DEG C/m that the unit of getting Δ h for convenience of narration is m, " R Cable Structure surface point " refers to while only considering sea level elevation along the definition of adjacent Cable Structure surface point between two of sea level elevation, in " R Cable Structure surface point ", do not have a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, the 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to the geometric properties of Cable Structure and bearing data, in Cable Structure, find and be subject to the sunshineduration position of those surface points the most fully the whole year, in " R Cable Structure surface point ", having a Cable Structure surface point at least is the annual point being subject in the most sufficient those surface points of sunshineduration in Cable Structure,
C. directly measure according to " the temperature survey calculating method of the Cable Structure of this method " the Cable Structure steady temperature data that calculate under original state, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T
_{o}", actual measurement or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses, obtain T in actual measurement
_{o}time, namely obtaining initial Cable Structure steady temperature data vector T
_{o}the synchronization in moment, directly measure the measured data that calculates initial Cable Structure, the measured data of initial Cable Structure is to comprise Cable Structure centrepoint load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the initial value of all monitored amounts, the initial rope force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure bearing spatial data, initial Cable Structure angledata, initial Cable Structure spatial data is in interior measured data, in obtaining the measured data of initial Cable Structure, measurement calculates the data of the health status that can express support cable including the Nondestructive Testing Data of support cable, the data of the health status that can express support cable are now called support cable initial health data, the initial value of all monitored amounts forms monitored amount initial value vector C
_{o}, monitored amount initial value vector C
_{o}the coding rule of coding rule and M monitored amount identical, utilize support cable initial health data and Cable Structure load measurement data to set up evaluation object initial damage vector d
_{o}, vectorial d
_{o}represent with initial mechanical calculating benchmark model A
_{o}the initial health of the evaluation object of the Cable Structure representing, evaluation object initial damage vector d
_{o}element number equal N, d
_{o}element and evaluation object be onetoone relationship, vectorial d
_{o}the coding rule of element identical with the coding rule of evaluation object, if d
_{o}evaluation object corresponding to some elements be support cable, so a d in cable system
_{o}the numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the corresponding support cable of this element is intact, do not damage, if its numerical value is 100%, represent that the corresponding support cable of this element has completely lost loadbearing capacity, lost the loadbearing capacity of corresponding proportion if its numerical value between 0 and 100%, represents this support cable, if d
_{o}evaluation object corresponding to some elements be some load, in this method, get d
_{o}this element numerical value be 0, the initial value that represents the variation of this load is 0, if while not having the Nondestructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d
_{o}in the each element numerical value relevant to support cable get 0, initial Cable Structure bearing spatial data forms initial Cable Structure bearing volume coordinate vector U
_{o},
The temperature variant physical and mechanical properties parameter of the various materials that d. use according to measured data, support cable initial health data, Cable Structure centrepoint load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the Cable Structure of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, initial Cable Structure bearing volume coordinate vector U
_{o}, initial Cable Structure steady temperature data vector T
_{o}with all Cable Structure data that preceding step obtains, set up the initial mechanical calculating benchmark model A of the Cable Structure that counts " Cable Structure steady temperature data "
_{o}, based on A
_{o}the Cable Structure computational data calculating must approach its measured data very much, and difference therebetween must not be greater than 5%; Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}cable Structure bearing spatial data be exactly initial Cable Structure bearing volume coordinate vector U
_{o}; Corresponding to A
_{o}evaluation object initial damage vector d for evaluation object health status
_{o}represent; Corresponding to A
_{o}monitored amount initial value vector C for the initial value of all monitored amounts
_{o}represent; U
_{o}, T
_{o}and d
_{o}a
_{o}parameter, by A
_{o}initial value and the C of all monitored amounts of obtaining of Mechanics Calculation result
_{o}the initial value of all monitored amounts that represent is identical, therefore also can say C
_{o}by A
_{o}mechanics Calculation result composition, A in the method
_{o}, C
_{o}, d
_{o}, U
_{o}and T
_{o}constant;
E. in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A
^{i} _{o}, A
_{o}and A
^{i} _{o}count temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A
^{i} _{o}" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T
^{i} _{o}represent vector T
^{i} _{o}definition mode and vector T
_{o}definition mode identical, T
^{i} _{o}element and T
_{o}element corresponding one by one; When the i time circulation starts, corresponding to A
^{i} _{o}" Cable Structure bearing spatial data " with current initial Cable Structure bearing volume coordinate vector U
^{i} _{o}represent vectorial U
^{i} _{o}definition mode and vectorial U
_{o}definition mode identical, U
^{i} _{o}element and U
_{o}element corresponding one by one; The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d
^{i} _{o}, d
^{i} _{o}cable Structure A while representing this circulation beginning
^{i} _{o}the health status of evaluation object, d
^{i} _{o}definition mode and d
_{o}definition mode identical, d
^{i} _{o}element and d
_{o}element corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C
^{i} _{o}represent vectorial C
^{i} _{o}definition mode and vectorial C
_{o}definition mode identical, C
^{i} _{o}element and C
_{o}element corresponding one by one, the current initial value vector of monitored amount C
^{i} _{o}represent corresponding to A
^{i} _{o}the concrete numerical value of all monitored amounts; U
^{i} _{o}, T
^{i} _{o}and d
^{i} _{o}a
^{i} _{o}characterisitic parameter, C
^{i} _{o}by A
^{i} _{o}mechanics Calculation result composition; When circulation starts for the first time, A
^{i} _{o}be designated as A
^{1} _{o}, set up A
^{1} _{o}method for making A
^{1} _{o}equal A
_{o}; When circulation starts for the first time, T
^{i} _{o}be designated as T
^{1} _{o}, set up T
^{1} _{o}method for making T
^{1} _{o}equal T
_{o}; When circulation starts for the first time, U
^{i} _{o}be designated as U
^{1} _{o}, set up U
^{1} _{o}method for making U
^{1} _{o}equal U
_{o}; When circulation starts for the first time, d
^{i} _{o}be designated as d
^{1} _{o}, set up d
^{1} _{o}method for making d
^{1} _{o}equal d
_{o}; When circulation starts for the first time, C
^{i} _{o}be designated as C
^{1} _{o}, set up C
^{1} _{o}method for making C
^{1} _{o}equal C
_{o};
F. from entering the circulation that is walked q step by f here, in structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data "
^{i}, vector T
^{i}definition mode and vector T
_{o}definition mode identical, T
^{i}element and T
_{o}element corresponding one by one, obtain current cable structure steady temperature data vector T in actual measurement
^{i}synchronization, actual measurement obtains Cable Structure bearing volume coordinate current data, all Cable Structure bearing volume coordinate current datas composition current cable structures actual measurement bearing volume coordinate vector U
^{i}, vectorial U
^{i}definition mode and vectorial U
_{o}definition mode identical, U
^{i}element and U
_{o}element corresponding one by one, obtain vector T in actual measurement
^{i}time, actual measurement obtains obtaining current cable structure steady temperature data vector T
^{i}the Cable Structure of synchronization in moment in the currency of all monitored amounts, all these numerical value form monitored amount current value vector C
^{i}, vectorial C
^{i}definition mode and vectorial C
_{o}definition mode identical, C
^{i}element and C
_{o}element corresponding one by one, represent that identical monitored amount is at numerical value in the same time not, obtain current cable structure steady temperature data vector T in actual measurement
^{i}time, to the M newly increasing
_{2}root sensing rope carries out NonDestructive Testing, therefrom identify and occur damage or lax sensing rope, according to monitored amount coding rule, what before this method, occur damages with the appearance identifying or lax element corresponding to sensing rope according to removing each vector of monitored amount coding rule numbering, also the appearance damage no longer occurring in the each vector sum matrix occurring after this method and identify or lax element corresponding to sensing rope, mention sensing rope after this method time, no longer comprise being identified here and occur damage or lax sensing rope, mention monitored amount after this method time, no longer comprise and be identified the Suo Li that occurs damage or lax sensing rope here, identify several from Cable Structure and occur damage or lax sensing rope, just by M
_{2}reduce same quantity with M,
G. according to current cable structure actual measurement bearing volume coordinate vector U
^{i}with current cable structure steady temperature data vector T
^{i}, according to step
_{g}1 to
_{g}3 upgrade current initial mechanical calculating benchmark model A
^{i} _{o}, the current initial value of monitored amount vector C
^{i} _{o}, current initial Cable Structure steady temperature data vector T
^{i} _{o}with current initial Cable Structure bearing volume coordinate vector U
^{i} _{o}, and the current initial damage vector of evaluation object d
^{i} _{o}remain unchanged;
G1. compare respectively T
^{i}and T
^{i} _{o}, U
^{i}and U
^{i} _{o}if, T
^{i}equal T
^{i} _{o}and U
^{i}equal U
^{i} _{o}, do not need A
^{i} _{o}upgrade, otherwise need to follow these steps to A
^{i} _{o}, U
^{i} _{o}and T
^{i} _{o}upgrade;
G2. calculate U
^{i}with U
_{o}poor, U
^{i}with U
_{o}difference be exactly the support wire displacement of Cable Structure bearing about initial position, with support wire motion vector, V represents support wire displacement, V equals U
^{i}deduct U
_{o}; Calculate T
^{i}with T
_{o}poor, T
^{i}with T
_{o}difference be exactly the variations of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{i}with T
_{o}poor represent with steady temperature change vector S, S equals T
^{i}deduct T
_{o}, S represents the variation of Cable Structure steady temperature data;
G3. first to A
_{o}in Cable Structure bearing apply support wire displacement constraint, the numerical value of support wire displacement constraint is just taken from the numerical value of corresponding element in support wire motion vector V, then to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, to A
_{o}middle Cable Structure bearing applies support wire displacement constraint and Cable Structure is applied and obtains the current initial mechanical calculating benchmark model A that upgrades after temperature variation
^{i} _{o}, upgrade A
^{i} _{o}time, U
^{i} _{o}all elements numerical value is also used U
^{i}all elements numerical value is corresponding to be replaced, and has upgraded U
^{i} _{o}, T
^{i} _{o}all elements numerical value is also used T
^{i}corresponding replacement of all elements numerical value, upgraded T
^{i} _{o}, so just obtained correctly corresponding to A
^{i} _{o}u
^{i} _{o}and T
^{i} _{o}, now d
^{i} _{o}remain unchanged; When upgrading A
^{i} _{o}after, A
^{i} _{o}the current initial damage of the evaluation object vector d for health status of rope
^{i} _{o}represent A
^{i} _{o}current cable structure steady temperature data vector T for Cable Structure steady temperature
^{i} _{o}represent A
^{i} _{o}current initial Cable Structure bearing volume coordinate vector U for bearing volume coordinate
^{i} _{o}represent; Upgrade C
^{i} _{o}method be: when upgrade A
^{i} _{o}after, obtain A by Mechanics Calculation
^{i} _{o}in concrete numerical value all monitored amounts, current, these concrete numerical value compositions C
^{i} _{o};
H. at current initial mechanical calculating benchmark model A
^{i} _{o}basis on, carry out several times Mechanics Calculation according to step h1 to step h4, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating
^{i}with evaluation object unit change vector D
^{i} _{u};
H1. in the time that the i time circulation starts, directly press step h2 to the listed method acquisition of step h4 Δ C
^{i}and D
^{i} _{u}; In other moment, when in step
_{g}in to A
^{i} _{o}after upgrading, must regain Δ C to the listed method of step h4 by step h2
^{i}and D
^{i} _{u}if, in step g not to A
^{i} _{o}upgrade, directly proceed to herein step I and carry out followup work;
H2. at current initial mechanical calculating benchmark model A
^{i} _{o}basis on carry out several times Mechanics Calculation, on calculation times numerical value, equal the quantity N of all evaluation objects, have N evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating each time hypothesis only has an evaluation object on the basis of original damage or load, to increase unit damage or load unit variation again, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is a load, just suppose that this load increases load unit again and changes, use D
^{i} _{uk}the unit damage or the load unit that record this increase change, and wherein k represents the numbering of the evaluation object that increases unit damage or load unit variation, D
^{i} _{uk}evaluation object unit change vector D
^{i} _{u}an element, evaluation object unit change vector D
^{i} _{u}coding rule and the vectorial d of element
_{o}the coding rule of element identical; The evaluation object that increases again unit damage or load unit variation in calculating is each time different from the evaluation object that increases again unit damage or load unit variation in other calculating, calculate each time the current calculated value that all utilizes mechanics method to calculate all monitored amounts of Cable Structure, a monitored amount calculation current vector of current calculated value composition of all monitored amounts that calculate each time; In the time that k evaluation object of hypothesis increases unit damage or load unit variation again, use C
^{i} _{tk}represent corresponding " monitored amount calculation current vector "; While giving in this step the element numbering of each vector, should use same coding rule with other vector in this method, to ensure any one element in each vector in this step, with in other vector, number identical element, expressed the relevant information of same monitored amount or same target; C
^{i} _{tk}definition mode and vectorial C
_{o}definition mode identical, C
^{i} _{tk}element and C
_{o}element corresponding one by one;
H3. the vectorial C calculating each time
^{i} _{tk}deduct vectorial C
^{i} _{o}obtain a vector, then each element of this vector is calculated after the unit damage supposed or load unit change numerical value and obtains " numerical value change vector δ a C for monitored amount divided by this
^{i} _{k}"; There is N evaluation object just to have N " the numerical value change vector of monitored amount ";
H4. by this N " the numerical value change vector of monitored amount " according to the coding rule of N evaluation object, composition has " the unit damage monitored numerical quantity transformation matrices Δ C that N is listed as successively
^{i}"; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}each be listed as corresponding to a monitored amount unit change vector; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}every a line corresponding to same monitored amount the different unit change amplitude in the time that different evaluation objects increase unit damage or load unit and change; Unit damage monitored numerical quantity transformation matrices Δ C
^{i}coding rule and the vectorial d of row
_{o}the coding rule of element identical, unit damage monitored numerical quantity transformation matrices Δ C
^{i}the coding rule of coding rule and M monitored amount of row identical;
I. define the vectorial d of current name damage
^{i} _{c}with current actual damage vector d
^{i}, d
^{i} _{c}and d
^{i}element number equal the quantity of evaluation object, d
^{i} _{c}and d
^{i}element and evaluation object between be onetoone relationship, d
^{i} _{c}element numerical value represent nominal degree of injury or the nominal load variable quantity of corresponding evaluation object, d
^{i} _{c}and d
^{i}with evaluation object initial damage vector d
_{o}element coding rule identical, d
^{i} _{c}element, d
^{i}element and d
_{o}element be onetoone relationship;
J. according to monitored amount current value vector C
^{i}with " the current initial value vector of monitored amount C
^{i} _{o}", " unit damage monitored numerical quantity transformation matrices Δ C
^{i}" and " the vectorial d of current name damage
^{i} _{c}" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula 1, in formula 1 except d
^{i} _{c}other outer amount is known, solves formula 1 and just can calculate the vectorial d of current name damage
^{i} _{c};
K. the current actual damage vector d that utilizes formula 2 to express
^{i}k element d
^{i} _{k}with the current initial damage vector of evaluation object d
^{i} _{o}k element d
^{i} _{ok}with the vectorial d of current name damage
^{i} _{c}k element d
^{i} _{ck}between relation, calculate current actual damage vector d
^{i}all elements;
K=1 in formula 2,2,3 ..., N; d
^{i} _{k}represent the current actual health status of k evaluation object in the i time circulation, if this evaluation object is support cable, so a d in cable system
^{i} _{k}represent its current actual damage, d
^{i} _{k}be to represent not damaged at 0 o'clock, while being 100%, represent that this support cable thoroughly loses loadbearing capacity, between 0 and 100% time, represent to lose the loadbearing capacity of corresponding proportion; If this evaluation object is load, so a d
^{i} _{k}represent the actual change amount of this load; So far this method has realized and has rejected damaged cable identification impact, Cable Structure that support wire displacement, load change and structure temperature change, and has realized simultaneously and has rejected support wire displacement, structure temperature variation and identification support cable health status variable effect, load change amount;
L. try to achieve the vectorial d of current name damage
^{i} _{c}after, set up mark vector B according to formula 3
^{i}, formula 4 has provided mark vector B
^{i}the definition of k element;
Element B in formula 4
^{i} _{k}mark vector B
^{i}k element, D
^{i} _{uk}evaluation object unit change vector D
^{i} _{u}k element, d
^{i} _{ck}the vectorial d of the current name damage of evaluation object
^{i} _{c}k element, they all represent the relevant information of k evaluation object, k=1 in formula 4,2,3 ..., N;
If m. mark vector B
^{i}element be 0 entirely, get back to step f and continue this circulation; If mark vector B
^{i}element be not 0 entirely, enter next step, i.e. step n;
N. according to formula 5 calculate next time, i.e. the i+1 time current initial damage vector of the required evaluation object of circulation d
^{i+1} _{o}each element;
D in formula 5
^{i+1} _{ok}the current initial damage vector of the required evaluation object d that next time, circulates for the i+1 time
^{i+1} _{o}k element, d
^{i} _{ok}this, i.e. the current initial damage vector of the evaluation object of the i time circulation d
^{i} _{o}k element, D
^{i} _{uk}the evaluation object unit change vector D of the i time circulation
^{i} _{u}k element, B
^{i} _{k}the mark vector B of the i time circulation
^{i}k element, k=1 in formula 5,2,3 ..., N;
O. at initial mechanical calculating benchmark model A
_{o}basis on, first to A
_{o}in Cable Structure bearing apply support wire displacement constraint, the numerical value of support wire displacement constraint is just taken from the numerical value of corresponding element in support wire motion vector V, then to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d
^{i+1} _{o}after obtain be exactly next time, i.e. the i+1 time required Mechanics Calculation benchmark model A of circulation
^{i+1}; Obtain A
^{i+1}after, obtain A by Mechanics Calculation
^{i+1}in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation
^{i+1} _{o};
P. take off once, i.e. the i+1 time required current initial Cable Structure steady temperature data vector T of circulation
^{i+1} _{o}equal the current initial Cable Structure steady temperature data vector T of the i time circulation
^{i} _{o}; The required current initial Cable Structure bearing volume coordinate vector U of the i+1 time circulation next time, i.e.
^{i+1} _{o}equal the current initial Cable Structure bearing volume coordinate vector U of the i time circulation
^{i} _{o};
Q. get back to step f, start circulation next time.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN201410085805.0A CN103868736A (en)  20140310  20140310  Linear displacement cable force monitoringbased progressive load identification method for damaged cable 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN201410085805.0A CN103868736A (en)  20140310  20140310  Linear displacement cable force monitoringbased progressive load identification method for damaged cable 
Publications (1)
Publication Number  Publication Date 

CN103868736A true CN103868736A (en)  20140618 
Family
ID=50907508
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201410085805.0A Pending CN103868736A (en)  20140310  20140310  Linear displacement cable force monitoringbased progressive load identification method for damaged cable 
Country Status (1)
Country  Link 

CN (1)  CN103868736A (en) 
Cited By (2)
Publication number  Priority date  Publication date  Assignee  Title 

CN104990751A (en) *  20150723  20151021  东南大学  Simplified method of progressively recognizing damaged cable load through linear displacement cable force monitoring 
CN105067328A (en) *  20150723  20151118  东南大学  Method for progressively recognizing load linear displacement of damaged cable based on cable force monitoring process 
Citations (5)
Publication number  Priority date  Publication date  Assignee  Title 

CN102052935A (en) *  20101109  20110511  石家庄铁道大学  Single tower cablestayed bridge model test system based on damage identification 
US7992449B1 (en) *  20080215  20110809  Mahmoud Khaled M  Method for assessment of cable strength and residual life 
WO2012164104A1 (en) *  20110603  20121206  Soletanche Freyssinet  Method for determining the fatigue capital of a cable 
CN103558040A (en) *  20130726  20140205  合肥工业大学  Equipment and method for cablestayed bridge cable replacing engineering monitoring 
CN103604636A (en) *  20131209  20140226  东南大学  Linear displacement progressive type identification method for cable force monitoring of damaged cable and intensive load 

2014
 20140310 CN CN201410085805.0A patent/CN103868736A/en active Pending
Patent Citations (5)
Publication number  Priority date  Publication date  Assignee  Title 

US7992449B1 (en) *  20080215  20110809  Mahmoud Khaled M  Method for assessment of cable strength and residual life 
CN102052935A (en) *  20101109  20110511  石家庄铁道大学  Single tower cablestayed bridge model test system based on damage identification 
WO2012164104A1 (en) *  20110603  20121206  Soletanche Freyssinet  Method for determining the fatigue capital of a cable 
CN103558040A (en) *  20130726  20140205  合肥工业大学  Equipment and method for cablestayed bridge cable replacing engineering monitoring 
CN103604636A (en) *  20131209  20140226  东南大学  Linear displacement progressive type identification method for cable force monitoring of damaged cable and intensive load 
NonPatent Citations (1)
Title 

刘新柱等: "《理论力学》", 30 June 2011 * 
Cited By (2)
Publication number  Priority date  Publication date  Assignee  Title 

CN104990751A (en) *  20150723  20151021  东南大学  Simplified method of progressively recognizing damaged cable load through linear displacement cable force monitoring 
CN105067328A (en) *  20150723  20151118  东南大学  Method for progressively recognizing load linear displacement of damaged cable based on cable force monitoring process 
Similar Documents
Publication  Publication Date  Title 

CN103913318A (en)  Method for progressively recognizing damaged cable and load based on angular displacement space coordinates monitoring  
CN103868745A (en)  Progressing identification method for damaged cable load generalized displacement through cable force monitoring  
CN103852317A (en)  Angular displacement mixedmonitoring load progressive identification method for problematic cable  
CN103868732A (en)  Linear displacement strain monitoringbased progressive load identification method for defective cable  
CN103913327A (en)  Progressive identification method for damaged cable and load through linear displacement monitoring and space coordinate monitoring  
CN103868727A (en)  Linear displacement angle monitoringbased progressive load identification method for defective cable  
CN103852288A (en)  Method for progressively recognizing damaged cables and loads based on cable force monitoring  
CN103868738A (en)  Generalized displacement cable force monitoring damaged cable load progressive identification method  
CN103913336A (en)  Method for identifying damaged cable load annular displacement in progressive mode through cable force monitoring  
CN103868714A (en)  Linear displacement strain monitoringbased progressive load identification method for damaged cable  
CN103868728A (en)  Angular displacement cable force monitoring problem cable load progressive identification method  
CN103913323A (en)  Progressive identification method for damaged cable and load through linear displacement monitoring and cable force monitoring  
CN103913333A (en)  Progressive identification method for damaged cable and load through linear displacement monitoring and hybrid monitoring  
CN103852319A (en)  Method for progressively recognizing damaged cables, loads and linear displacement based on cable force monitoring  
CN103913343A (en)  Hybrid monitoring damaged cable load generalized displacement progressive identification method  
CN103868742A (en)  Angular displacement strain monitoring problem cable load progressive identification method  
CN103868736A (en)  Linear displacement cable force monitoringbased progressive load identification method for damaged cable  
CN103852320A (en)  Angular displacement cable force monitoring load progressive identification method for damaged cable  
CN103852303A (en)  Damaged cable load progressive recognition method based on space coordinate monitoring  
CN103852282A (en)  Method for progressively recognizing damaged cables and loads based on cable force monitoring  
CN103868709A (en)  Progressive type hybrid monitoring damaged cable load identification method  
CN103913337A (en)  Generalized displacement cable force monitoring defective cable load progressive identification method  
CN103868719A (en)  Linear displacement angle monitoringbased progressive load identification method for damaged cable  
CN103852328A (en)  Anglemonitoring load linear displacement progressive identification method for damaged cable  
CN103852326A (en)  Progressive recognition method for damaged cable load and linear displacement through mixed monitoring 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
C06  Publication  
SE01  Entry into force of request for substantive examination  
C10  Entry into substantive examination  
RJ01  Rejection of invention patent application after publication 
Application publication date: 20140618 

C12  Rejection of a patent application after its publication 